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ABSTRACT 

Lymphatic Filariasis (LF) is a Neglected Tropical Disease, caused by mosquito-

borne filarial nematodes including Brugia malayi, which infects over 120 million people. 

Mass drug administration is used for LF control but limited efficacy of the drugs 

combined with the threat of resistance drives the need for novel control strategies. 

Chemosensation is an essential behavior used by nematodes, including parasitic species, 

has roles in development, avoidance of noxious stimuli and finding food/mates/hosts, 

making genes involved in this system attractive targets for parasite control. Little, 

however, is known about the chemosensory system in parasitic nematodes. Here we 

address this knowledge gap and describe the structural, behavioral and genetic basis for 

chemosensation in filarial nematodes. Sensory structures and their innervation are 

identified in larval and adult stages of B. malayi using scanning electron and fluorescent 

microscopy. In addition, behavioral responses of B. malayi L3 stage parasites to host-

derived stimuli were profiled and specific tactic behaviors that may be important in host-

seeking and host-invasion identified. To further characterize the genetic basis for 

chemosensation in B. malayi, we surveyed heterotrimeric G-proteins (known mediators 

of nematode chemosensation) on a pan-phylum level using bioinformatic and 

phylogenetic approaches. This analysis revealed highly conserved and novel patterns of 

gene expression that may be exploited for novel LF control strategies. While the 

characterization of chemosensation in B. malayi has revealed one mechanism by which 

the nematode interacts with its environment, interactions between the nematode and host 

(both mosquito and human) are far more complex. Here we also present results, which 

demonstrate for the first time that parasitic nematodes of humans use exosomes, a 
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specific type of extracellular vesicle, to deliver bioactive molecules capable of 

manipulating the host-parasite interface. We show L3 stage B. malayi release 

extracellular vesicles of the size and shape of exosomes in prodigious quantities. The 

cargo of these vesicles includes exosomal markers and putative effector proteins as well 

as an abundant microRNA complement suggesting a role in host manipulation. The 

parasite vesicles are rapidly internalized by host macrophages where they stimulate a 

classically activated phenotype. These results suggest a novel mechanism by which 

human parasitic nematodes may actively direct the host responses to infection and could 

seed new therapeutic strategies for LF control. 
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CHAPTER 1 

INTRODUCTION 

Nematodes are one of the most diverse groups of organisms with over 23,000 

species having been described to date [1]. Diverse species of nematode occupy terrestrial, 

freshwater and marine environments and display both free-living and parasitic life styles 

[1]. Parasitic nematodes infect both plants (plant-parasitic nematodes, PPN) and animals 

(animal-parasitic nematodes, APN) and can be transmitted through a number of different 

mechanisms, including insect vectors such as mosquitoes and black flies. The impact that 

parasitic nematodes have is enormous. For example, it is estimated that PPNs cause $125 

billion USD in damage every year, although this is likely a gross underestimate of the 

real impact of these parasites [2, 3]. The outlook with APNs is equally grim with more 

than two billion people thought to be currently infected by parasitic nematodes [4]. The 

global burden of APNs is compounded by the fact that the number of effective drugs 

currently available to treat them is extremely limited [4, 5]. These factors, combined with 

the chronic nature of APN infection, underscore the need for the development of novel 

strategies for treatment and control. In pursuit of novel control targets, the work 

described in this dissertation has focused on elucidating those behaviors that are essential 

for successful transmission and establishment of infection of the filarial parasite Brugia 

malayi. 

Three parasites are etiologic agents of Lymphatic Filariasis (LF): Wuchereria 

bancrofti, B. malayi, and B. timori, listed here in descending order of disease incidence. It 

is estimated that over 120 million people currently suffer from this disfiguring disease 
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while more than one billion people are at risk of contracting LF in 73 endemic countries 

worldwide [6]. While most cases of LF remain asymptomatic, clinical manifestations of 

the disease are debilitating and disfiguring. Symptoms including lymphedema, 

elephantiasis, hydrocele (in males) and hypereosinophilia often lead to permanent, long-

term incapacity [6]. In addition to overt symptoms, damage to the lymphatic vasculature 

reduces the ability of the immune system to combat opportunistic pathogens and as a 

result secondary bacterial infections are common. LF is a disease that not only impacts 

those afflicted but also has a significant impact on their caregivers. Disfigurement as a 

result of LF leads to stigmatization within the community and chronic disability 

negatively impacts economic output and increases poverty making LF a leading cause of 

disability worldwide with at least 2.8 million disability-adjusted life years (DALYs) 

associated with this disease [6].  

Both mosquito vectors and mammalian hosts are required for B. malayi to 

complete its life cycle. Microfilariae (mf) are ingested by the mosquito during a blood 

meal from a parasitemic host [7]. Once inside the mosquito, mf migrate to the indirect 

thoracic musculature where they undergo two molts to become infectious L3 stage 

parasites [7]. At this stage, the parasite migrates to the head and proboscis of the 

mosquito where they can be transmitted to an uninfected human host when the mosquito 

feeds again [7]. L3 stage parasites are deposited on the skin while the mosquito is taking 

a blood meal. In order to establish infection the parasite must identify and invade the 

human host using the wound made by the mosquito. Once inside the human host, the 

parasites migrate to the lymphatic vasculature where they undergo an additional two 

molts to become sexually mature adults [8].  
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In 2000, the World Health Organization launched the Global Program to 

Eliminate Lymphatic Filariasis (GPELF) with the ambitious goal of eliminating LF as a 

public health concern by 2020 [9]. The strategy for success incorporates two components: 

stopping the spread of infection by disrupting transmission and alleviation of suffering 

for those affected by LF [9]. To disrupt transmission, mass drug administration (MDA) 

and vector control have been implemented and while great strides have been made using 

these strategies, they are not without their limitations. Currently, only three drugs 

(diethylcarbamazine citrate, ivermectin and albendazole) are available to treat LF, none 

of which are effective against the adult stage of the parasite, which can live in the body 

for up to 10 years. This inefficiency against critical life stages along with the growing 

threat of resistance highlights the need for novel methods of treatment and control.  

Disruption of transmission of this parasite can be achieved by targeting critical 

life stages such as L3 or adult stages using novel strategies to manipulate interactions 

between the parasite and the mosquito vector or human host. The first part of this chapter 

provides an overview of research related to the means by which nematodes communicate 

with, and take cues from, the environment, and how these interactions facilitate 

parasitism. All of the work described in this thesis emphasizes the parasitic nematode, B. 

malayi because, of the parasites that cause LF, B. malayi is the only species that is 

experimentally tractable by virtue of available laboratory animal and susceptible 

mosquito hosts. Various physical and genetic aspects of chemosensation in free-living, 

plant- and animal-parasitic nematodes will be addressed. In the second part of this 

chapter, extracellular vesicles will be described, with a focus on how parasites use them 

to navigate and manipulate their surroundings.  
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Chemosensation in nematodes 

All nematodes likely respond to gustatory and olfactory cues (chemosensation) to 

elicit a variety of behaviors including finding food and mates, avoiding noxious 

conditions and entry/exit into arrested developmental stages [10-12]. In addition, 

chemosensation is critical in host-seeking and host-invasion behavior in parasitic 

nematodes of both plants and animals [12-14]. Not only must all parasitic species be able 

to locate a suitable host but they also have to adapt to rapidly changing environments, 

which often includes the switch from a free-living to a parasitic lifestyle or, in the case of 

vector-borne parasites, a drastic change in host environment. For instance, mosquitoes 

transmit the filarial worms that cause LF. For the parasite to be successful it must be able 

to rapidly adapt to both the physical and biochemical environments within the mosquito 

vector and the human host, identify and invade the appropriate host cells and tissues, and 

suppress or avoid host immune responses. Much of this is directly impacted by the 

parasite’s ability to sense and respond to environmental cues, making chemosensation 

critical for successful infection by most, if not all, parasitic nematodes.  

Numerous studies using the free-living nematode Caenorhabditis elegans have 

shown that this organism has a robust chemosensory response with the ability to sense 

hundreds of compounds and respond to many of them in a concentration-dependent 

manner [15]. Several studies have demonstrated that plant- and animal-parasitic 

nematodes also exhibit chemosensory responses. PPNs such as Globodera pallida and 

Meloidogyne incognita are attracted to compounds that are characteristic of preferred 

hosts and even facilitate parasite orientation towards ideal invasion sites, indicative of 

both long- and short-range chemosensory capabilities [16-18]. APNs including 
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Strongyloides stercoralis, Brugia pahangi and Haemonchus contortus use 

chemosensation to identify and invade preferred hosts [19-22]. Chemosensory perception 

varies depending on host preference to such a degree that these preferences reflect host 

specificity rather than phylogeny, implying that chemosensation is crucial for host 

selection [19, 22]. These studies demonstrate that chemosensory behavior is not unique to 

free-living nematodes like C. elegans, but a behavior that is central to species across the 

phylum. 

Neuroanatomy 

  Nematodes, like other animals, have specialized organs to process chemosensory 

stimuli from their surroundings. These organs, called amphids and phasmids, contain 

numerous neurons dedicated to processing sensory information. The primary 

chemosensory organs in nematodes are the amphids and to a lesser extent, the phasmids 

[11, 23-28]. Various studies have demonstrated the presence of amphids and phasmids in 

free-living, plant- and animal-parasitic nematodes, strongly suggesting that these 

structures are a basal characteristic of the Phylum [12, 25, 27, 29-39]. Through these 

organs, nematodes have the ability to detect and respond to numerous chemical stimuli 

from the environment [15, 17, 24, 40]. 

In C. elegans, traditional nomenclature for amphid neurons and their associated 

cilia use a three letter scheme [28]. The first letter “A” stands for amphid, while the 

second letter is used to designate the type of dendritic processes present (S = single, D = 

double, W = wing and F = finger) [23, 28]. Each neuron pair identified in C. elegans was 

assigned a third letter A-L to differentiate between the neurons [23]. Thus, ASE neurons 
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are amphid neurons with a single process, ADL neurons have double processes, AWC 

neurons have wing cells and AFD neurons have a finger cell. In both APNs and PPNs, 

arrangement of amphidial neurons is similar to that in C. elegans and therefore, names of 

neurons in these species were assigned based on positional homology with C. elegans 

[41].  

Amphids are a pair of lateral sensory organs located anteriorly with cephalic or 

cervical external openings while phasmids are located in the tail (Fig. 1) [11, 17, 23, 24, 

26, 27]. Each amphid contains two glia cells called socket and sheath cells, which 

contribute to the formation of the amphid channel, as well as multiple specialized sensory 

receptive endings called cilia, the number of which varies among taxa (Fig. 1) [12, 17, 

23, 24, 26, 40, 42]. Phasmids are a specialized pair of sense organs similar in structure to 

amphids but located posteriorly with caudal external openings [17, 27]. Phasmids, like 

amphids, have sheath and socket cells surrounding the channel, however, they are smaller 

and contain fewer neurons [26, 27, 42]. In addition to cilia, both amphid and phasmid 

channels contain a gelatinous material called a matrix that is secreted (amphid/phasmid 

secretions) to the environment (Fig. 1) [26, 40, 42]. The matrix composition, which varies 

between species, may have protective as well as sensory functions [17].  
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Figure 1. Schematic of C. elegans amphid. Detailed structure of amphid pocket 
showing cuticle, socket (So) and sheath (Sh) cells as well as ciliated nerve ending of the 
12 neurons present in the amphid. Arrows indicate anterior (A) and posterior (P) 
direction. Image modified with permission from [26]. 

 
Amphid and phasmid channels are formed by both the socket and sheath cells, 

each portion of the channel however appears to arise through different mechanisms [26]. 
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The socket cell forms the anterior portion surrounding the distal tips of the cilia and 

secretes cuticle, which lines the opening of the amphid and phasmid channels [14, 26]. 

The sheath cell, which is deeply folded or otherwise modified to provide a large surface 

area, forms the posterior portion of the amphid channel, is unlined with cuticle and is 

completely penetrated by all amphid neurons except the AFD neuron [14, 17, 26]. The 

sheath and socket cells surround the channel sealing to themselves and each other via 

tight junctions [14, 23, 26, 37]. 

A key function of sheath glia cells, which is broadly conserved in the sensory 

organs of both invertebrates and vertebrates, is the formation of an isolated extracellular 

compartment to house and protect neuronal sensory receptive endings [23, 40, 42, 43]. In 

addition to this function, sheath glia are required for the proper function of amphid 

sensory neurons as demonstrated by numerous profound defects elicited when these cells 

are ablated [24]. In C. elegans, ablation of sheath glia cells resulted in severe chemotaxis 

defects as well as aberrant ciliary morphology in several amphid neurons [24].  

The sheath cell is the source of matrix-filled vesicles that deposit their contents 

around the cilia within the amphid and phasmid channels and that is secreted to the 

outside environment (amphid or phasmid secretions) [26, 35]. Amphid secretions have 

been found to play a role in ion/water regulation and through this provide an appropriate 

environment for the transmission of receptor potentials from the receptor site, thereby, 

facilitating signal transduction in chemosensation [14]. In addition, compounds that have 

direct roles in chemotaxis have been identified in amphid secretions, further implicating 

the matrix in chemosensation [44]. 



www.manaraa.com

9 
	  

Although amphid secretions have been observed in numerous nematodes, the 

composition of these secretions appears to be dictated in part by the life style of the 

nematode, as demonstrated by the variety of behaviors that are affected by these 

secretions [45]. For example, anticoagulants have been identified in amphid secretions 

from the APNs Ancylostoma caninum, Necator americanus and Syngamus trachea which 

arose presumably as an adaptation to facilitate blood-feeding [14, 46]. In addition, 

acetylcholinesterase has been identified as a component of the matrix in several APNs 

and PPNs [45]. In APNs, the release of acetylcholinesterase has been linked with 

attachment to host gut, and to host membrane permeabilization and host immune 

modulation [46]. Components found in amphid secretions may also facilitate feeding in 

PPNs such as H. glycines by contributing material to the formation of a plug around the 

stylet of the nematode during feeding [35]. MAP-1 is a protein found in the amphid 

secretions of the PPN M. incognita during both migrating (infective pre-parasitic J2) and 

sedentary stages. It has also been detected along the cell wall of the adjacent giant cells 

within the plant apoplasm suggesting that this protein could be involved in both 

nematode-plant recognition and interactions [18]. 

Chemosensory neurons have to interact either directly or indirectly with the 

environment in order to elicit a chemosensory response [23, 42]. Many chemosensory 

neurons are exposed to the environment via specialized sensory receptive endings called 

cilia, which either terminates in the amphid channel or sheath cell (Fig. 1). These cilia are 

sites for receptors, ion channels and other signal transduction molecules that recognize 

environmental stimuli [40, 43]. Although the amphid structure is conserved across 

nematode species, cilia number, location and morphology appear to be highly variable 
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[14, 47]. For example, while C. elegans have eight chemosensory neurons that have cilia 

present in the amphid channels, only seven have been observed in the soybean cyst 

nematode, Heterodera glycines, and in the root-knot nematode, Meloidogyne incognita 

[35, 37]. In addition to the seven cilia, three to five cilia terminate within the sheath cell 

[35, 37, 47]. Furthermore, Haemonchus contortus, a parasite of ruminants, has seven 

single-cilia and three double-cilia located in the amphid channel [41]. In addition, there is 

one wing cell and one finger cell type cells in which cilia terminate within the sheath cell 

[41]. Cilia composition appears to be highly variable among nematodes. However, the 

reason for this is unknown. Studies done to characterize chemosensory structures in 

parasitic nematodes are extremely limited and none have been focused on identifying any 

relationship cilia structure has with amphid neuron function in these animals.  

In C. elegans, eight neurons (ASE, ASG, ASH, ASI, ASJ, ASK, ADF and ADL) 

have microtubule-based sensory cilia that extend the length and terminate within the 

amphid channel [23, 24, 26, 40, 43]. These cilia are directly exposed to the outside 

environment through the amphid pore while the cilia of three neurons (AWA, AWB, 

AWC) initially enter the amphid channel but then divert and invaginate into the sheath 

cell [10, 23, 24, 26, 40, 43]. Although the distal segments of these neurons terminate in 

the amphid sheath, a large portion of the cilia including the neuron/sheath junction and 

the transition zone are exposed to the matrix-filled lumen and thus are in contact with the 

environment [48].  

Cilia of both phasmid neurons (PHA and PHB) resemble the cilia of amphid 

channel neurons in that these neurons have a single microtubule-based dendritic process 
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that terminates within the phasmid channel thus allowing direct exposure to the 

environment through the phasmid pore [26].  

Cilia structure is unique in each neuron pair, which allows the identification of the 

sensory neuron based upon cilia morphology [23, 24, 40].  ASE, ASG, ASH, ASI, ASJ 

and ASK neurons all have dendrites that end in a single cilium, while ADF and ADL 

dendrites end in a pair of cilia (Table 1) [26]. AWA, AWB and AWC neurons each have 

unique branched cilia, called wing cells (Table 1) [26]. AWA and AWB neurons have 

cilia similar in size to channel cilia, however, while the AWA dendrites split in multiple 

small cilia, AWB dendrites are branched and flattened [10, 26]. AWC neurons have 

branched cilia that flattened into large sheets resembling wings [26]. The remaining 

amphid neuron (AFD) has a single microtubule-based cilium, called the finger cell, which 

is surrounded by an array of actin-supported microvilli-like protrusions and is entirely 

embedded within the sheath cell (Table 1) [23, 24, 26, 40, 43]. 

Much of what is known about sensory neurons in nematodes is a result of studies 

on the free-living nematode C. elegans, which has a fixed number of neurons that have 

been mapped using electron microscopy [28]. Having a complete map of the neuronal 

arrangement, combined with the development of techniques such as laser ablation and 

RNA interference, has provided a unique opportunity to identify neuron function to a 

very high resolution. In C. elegans, more than 10% of all neurons are dedicated to 

sensory behavior, highlighting the importance and complexity of this physiology to this 

organism [49]. In contrast, although much work has been done to characterize neuronal 

function in chemosensation in C. elegans, very few studies have been dedicated to 

understanding these neurons in parasitic nematodes.  
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A list of chemosensory neurons present in C. elegans and their functions is 

provided in Table 1. In C. elegans, chemosensory neurons are used to discriminate 

between a wide variety of odors by not only segregating the detection of odors into 

distinct olfactory neurons but also by utilizing unique combinations of olfactory neurons 

[50]. Twelve pairs of sensory neurons are present in C. elegans, eleven of which are 

involved in chemosensory responses and one that mediates thermosensory behavior [49, 

51]. Table 1 summarizes the amphid and phasmid neurons and functions present in C. 

elegans. ASE, ASG, ASH, ASI, ASJ, ASK, ADF, ADL, AWA, AWB and AWC amphid 

neuron pairs all have some involvement in chemosensation while the AFD neuron pair is 

involved in thermosensation in C. elegans [49, 51]. ASE neurons are required for 

responses to water-soluble attractants [51]. ASG, ASI and ADF neurons not only function 

in water-soluble chemotaxis but are also involved in dauer formation, which is an 

arrested life stage that is induced during harsh environmental conditions [10, 51, 52]. The 

ASH and ADL neuron pairs mediate avoidance to noxious water-soluble and volatile 

compounds [10, 53-55]. The function of ASJ neurons is primarily in dauer recovery, 

however, they also have a minor role in chemosensation [51, 52, 56]. ASK neurons are 

required for chemotaxis towards L-lysine and have a role in dauer development [51, 56-

58]. AWA neurons sense attractive volatile compounds such diacetyl and pyrazine [10, 

50, 59].  C. elegans uses the AWC neuron to sense and distinguish between numerous 

attractive volatile odors while AWB neurons mediate avoidance responses not only to 

repellent volatile odors but also to some pathogenic bacteria [10, 50, 59, 60]. Both 

neurons allow C. elegans to discriminate between food sources [60]. There are only two 
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pairs of phasmid neurons (PHA and PHB) involved in chemosensory behavior in C. 

elegans, both of which mediate avoidance behavior [51, 58]. 

 
Amphid and phasmid neurons in C. elegans, most of which are involved in 
chemosensation. Neurons, associated cilia type and primary functions are listed. Relevant 
references are listed. Amphid neuron naming convention follows a three-letter scheme: 
first letter refers to amphid (A), second letter refers to cilia type (S = single, D = double, 
W = wing and F = finger) and third letter (A – L) was assigned to differentiate between 
neurons. Phasmid neuron naming convention follows in a similar format except that cilia 
type is not noted (PH = phasmid while last letter (A – B) was assigned to distinguish 
between neurons). 

 

The lion’s share of research to identify sensory neurons and their function has 

been done in C. elegans but pan-phylum positional homology has allowed the 

identification of sensory neurons in some parasitic nematodes. While there is significant 

morphological and positional conservation between sensory neurons in C. elegans and 

other nematodes, there are some differences [14, 23]. This is illustrated, in the number of 

Table 1: Amphid and phasmid neurons in Caenorhabditis elegans. 
Neuron Cilia  Function References 
ASE Single Water-soluble chemotaxis [51] 
ASG Single Water-soluble chemotaxis, dauer formation [51] 
ASH Single Volatile chemotaxis (avoidance) [53, 54, 58] 
ASI Single Water-soluble chemotaxis, dauer formation [51] 
ASJ Single Chemotaxis, dauer recovery [49, 52] 
ASK Single Chemotaxis towards L-lysine, dauer recovery [51, 57] 
ADF Double Water-soluble chemotaxis, dauer formation [51] 

ADL Double Water-soluble and volatile chemotaxis 
(avoidance) [54, 58] 

AWA Wing Volatile chemotaxis (attractive) [50, 54, 60] 
AWB Wing Volatile chemotaxis (avoidance) [50, 54, 60] 
AWC Wing Volatile chemotaxis (attractive) [50, 54, 60] 
AFD Finger Thermosensation [49, 51] 
PHA Single Chemotaxis (avoidance) [58] 
PHB Single Chemotaxis (avoidance) [58] 
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amphid neurons present in nematodes. In general, there are 12 pairs of sensory neurons in 

the amphids of nematodes [10, 41]. However in the case of Strongyloides stercoralis, a 

skin-penetrating parasite of mammals, there are 13 pairs of sensory neurons found within 

the amphids illustrating the variability that may arise as a result of adaptation to 

specialized life styles such as parasitism [14, 41]. 

While much is known about the function of amphid neurons in C. elegans, little is 

known about how these neurons work in parasitic nematodes. What is known in parasitic 

nematodes is restricted to a few studies involving the APNs, Ancylostoma caninum and S. 

stercoralis. Similar to C. elegans, A. caninum is repelled by sodium dodecyl sulphate 

(SDS) [61]. In C. elegans, ASH and ASK amphid neurons mediate this avoidance. 

However, laser ablation studies in A. caninum revealed that SDS avoidance is facilitated 

through the amphid neurons ASH and ADL [61].  Like C. elegans, the amphid neurons 

ASE and ASH mediate attraction and repulsion to sodium chloride in S. stercoralis [62]. 

Of particular note, ASF (analogous to ADF neurons in C. elegans), ASI and ASJ neurons, 

which all function in dauer development and recovery in C. elegans, may have similar 

functions in the analogous arrested development stage in S. stercoralis [14, 63, 64]. A 

unique pair of neurons in S. stercoralis is the ALD neurons [14, 65]. In contrast to C. 

elegans, the amphids of S. stercoralis do not contain finger cells, instead each amphid 

contains a pair of neurons whose dendrites end in a multi-layered complex of lamellae 

[65]. Preservation of established naming conventions led these neurons being named 

ALD neurons (A = amphid, L = lamellar cells, D = likely functional homology with AFD 

neurons in C. elegans) [28]. The ALD neuron differs from the AFD neuron as this neuron 

enters the amphid channel but terminates in the sheath cell similar to wing cell neurons 
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(AWA, AWB and AWC), while the AFD neuron resides completely within the sheath 

cell never entering the amphid channel [14, 65]. Similar to AFD neurons, which have 

numerous microvilli, the lamellae of ALD neurons greatly increase the surface area of 

these neurons suggesting that ALD neurons are involved in thermosensation in S. 

stercoralis, which was confirmed with laser ablation studies [14, 65]. To date, nothing is 

known about the role of phasmids in chemosensation in any parasitic nematodes. These 

studies demonstrate that while structural homology exists in sensory structure between C. 

elegans and parasitic nematodes, differences in function are present, underscoring the 

need for investigation into chemosensation in both plant- and animal-parasitic nematodes.  

Very little is known about how sensory neurons, which detect environmental 

stimuli, are connected to the motor programs that execute behavioral responses. In the 

free-living nematode C. elegans, these circuits are thought to be shallow, using few 

interneuronal relays to move from detection of stimulus to action [66]. What little is 

known about the role of interneurons in chemosensation is restricted to studies done 

using C. elegans. However, sensory neuron conservation between this species and 

parasitic nematodes would dictate that APNs and PPNs are likely to possess interneurons 

that function in chemosensation [41].  

There are four interneuron pairs that are considered sensory interneurons because 

they receive and process synaptic inputs from the amphids [16]. These are AIA, AIB, 

AIY and AIZ interneurons (first letter A = amphid, second letter I = interneuron and third 

letter used to distinguish between interneurons) [28]. AIA is a primary interneuron that is 

cholinergic and receives input from multiple amphid neurons including ASI and ASK 

amphid neurons [16, 67]. Both AIB and AIY are interneuron pairs that act downstream of 
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AWC sensory neurons, however activation of each leads to distinct behavioral responses. 

Activation of AIB leads to increased foraging behavior in C. elegans, while activation of 

AIY leads to a decrease in foraging behavior [68, 69]. AIZ interneurons are required for 

water-soluble sodium chemotaxis which is mediated through ASE amphid neurons [70].  

Sensory transduction 

Chemosensation is a complex and highly regulated process requiring input from a 

network of olfactory neurons that utilize a number of signaling pathways in a variety of 

ways in order to elicit behavioral responses [10, 43, 50, 60]. Although the anatomical 

components have been identified, the signaling cascades are not well defined. In C. 

elegans, G protein-coupled receptors (GPCRs), G-proteins, guanylyl cyclases and cGMP-

gated channels are all required for chemosensation [50, 60]. Nothing is known about 

sensory signal transduction in parasitic nematodes and it remains to be seen how 

conserved sensory signaling cascades are across nematodes.  

Nematodes only have a small number of chemosensory neurons compared to 

mammals, however several different receptor genes are expressed in each of these 

neurons, thereby providing a system in which nematodes can respond to an enormous 

number of different chemical stimuli [10, 11, 71]. Most chemoreceptors in animals, 

including nematodes, are G protein-coupled receptors (GPCRs) [10]. Over 1300 genes 

belong to putative chemoreceptor gene families in C. elegans, which comprises more 

than 5% of the genome [72]. Despite the large number of genes, direct evidence for a 

specific chemosensory function is limited to a single gene (odr-10). However, expression 

patterns and other indirect evidence implicate chemosensory roles for many GPCRs [10, 



www.manaraa.com

17 
	  

49, 72]. In C. elegans, genes encoding GPCRs fall into more than 20 families based on 

sequence homology [72, 73]. Of these, the srh family, a member of the seven 

transmembrane-domain (str) superfamily, is the largest encoding over 200 GPCRs, most 

of which are expressed predominately in sensory neurons [10, 72, 73]. This family 

includes odr-10, which is the only chemoreceptor for which a ligand has been identified 

in C. elegans [74]. Odr-10, which is expressed exclusively in AWA neurons, was found 

to have a high affinity for the volatile attractant diacetyl. However, responses to other 

odorants detected by AWA neurons were unaffected [74]. Parasitic nematodes appear to 

have fewer GPCRs than free-living nematodes. Although the C. elegans genome encodes 

over 1300 GPCRs, genome analysis of the APN, H. contortus, revealed 540 putative 

GPCRs, while the PPNs M. hapla and M. incognita are thought to encode fewer than 150 

[75, 76]. It is not clear why such extreme variation in GPCR gene number exists but it 

may be related to life style differences. Whereas C. elegans is a free-living nematode, H. 

contortus is a parasite with both free-living and parasitic life stages. On the other hand 

Meloidogyne spp. are sedentary, obligate endoparasites of various plant roots [77].  

Amphid neurons exist as structurally similar pairs; however receptor gene 

expression is often asymmetric [10, 50]. Asymmetric expression of specific receptors 

provides a mechanism in which nematodes are able to expand the repertoire of 

compounds they can assimilate from the external environment. For instance, high 

concentrations of butanone have been shown to block olfactory signaling to 

benzaldehyde [50]. Both compounds are detected by the AWC neurons but butanone is 

only detected by the AWC neuron that expresses str-2, which is a putative chemoreceptor 

that is also involved in AWC cell fate determination [50]. Str-2 is expressed in either the 



www.manaraa.com

18 
	  

left or right AWC neuron but never in both AWC neurons [50]. Because butanone is able 

to block benzaldehyde signaling, the neuron expressing str-2 does not detect it [50]. The 

remaining AWC neuron however is unaffected by butanone, therefore, this asymmetric 

expression pattern allows detection of benzaldehyde to proceed [50]. 

The type of response elicited could be specified by a receptor or by the sensory 

neuron in which the receptor is expressed [10]. In C. elegans, one model for the 

organization of olfactory information is that each chemosensory neuron pair is dedicated 

to a characteristic response (either attractive or repellent, not both) and all receptors 

expressed in that neuron pair drive the same behavior [10]. Evidence for this model was 

first demonstrated by expressing odr-10 in AWB neurons [10]. When expressed in AWB 

neurons, odr-10 drives a repellent behavior response to diacetyl, a volatile compound 

normally attractive to C. elegans, indicating that the cell type expressing the receptor is 

more important than the receptor itself in determining behavioral outcomes [10]. This 

model extends further in demonstrating that signal transduction pathways vary between 

cell types even if the same receptor is used [10]. For instance, ODR-10 mediated 

signaling in AWA sensory neurons occurs via ODR-3 and OSM-9, while ODR-10 

signaling in AWB neurons occurs through ODR-3 and the cGMP-gated channel, TAX-

4/TAX-2 [10]. This model explains that while some receptors may be expressed in only 

one neuron, others may be expressed in multiple neurons and mediate multiple behaviors 

[17]. 

The role of GPCRs in chemosensation is poorly understood even in the model 

organism, C. elegans and even less so in nematode parasites. Chemoreceptors are thought 

to couple with heterotrimeric guanine nucleotide binding proteins (G-proteins) in C. 
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elegans [49]. G-proteins serve to relay signals from GPCRs to downstream intracellular 

effectors [78]. Three peptides comprise G-proteins; G-protein α subunits which confer 

functional specificity to the G-protein, G-protein β subunits and G-protein γ subunits, 

which typically functions as a dimer [78]. In the inactive state, Gα bound to GDP (Gα-

GDP) is associated with the Gβγ dimer and with its GPCR [79]. Ligand binding to the 

GPCR leads to activation of the G-protein [79]. Upon activation, GTP is exchanged for 

GDP on the Gα subunit which causes Gα-GTP to dissociate from the Gβγ dimer [79]. At 

this point both entities can interact with a variety of downstream effectors [79]. Signal 

termination occurs via hydrolysis of GTP to GDP by the intrinsic GTPase activity of Gα 

thereby allowing Gα-GDP to reassociate with Gβγ [79].  

In C. elegans there are 22 G-protein α subunit (GPA) genes, gpa 1-18, goa-1, gsa-

1, egl-30 and odr-3; two Gβ subunit genes (GPB), gpb-1 and gpb-2; and two Gγ subunit 

(GPC) genes, gpc-1 and gpc-2 [80]. The majority of these genes cluster on chromosomes 

I and V [80]. Of the 22 GPAs, only six have human homologues: gpa-4, gpa-16 & goa-1, 

Gαi/o; gsa-1, Gαs; egl-30, Gαq; and gpa-16, Gα12, while the remaining 16 are specific to 

Nematoda [80]. Of the 16 “nematode-specific” GPAs, 13 are exclusively expressed 

sensory neurons, including amphid and phasmid neurons suggesting a role for these 

GPAs in chemosensation [78, 80]. Studies using gain- and loss-of-function mutations 

demonstrated roles for GPA 1-7, 10-11 and ODR-3 in chemosensation [50, 60, 80]. Both 

gain- and loss-of-function mutants for ODR-3 demonstrate severe defects in food odor 

recognition and preference responses mediated by AWB and AWC sensory neurons [60]. 

In addition, animals defective for EAT-16, a negative regulator of neuronal G-protein 

signaling, also showed severe defects for food-odor mediated responses [60].  
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Gbp-1, gbp-2 and gpc-2 are widely expressed while gpc-1 expression is restricted 

to amphid and phasmid neurons however due to the limited number of subunits available, 

the various Gα subunits likely associate with these in limited combinations to form 

heterotrimers [81-83]. All but GPC-2 have been found to function in chemosensation; 

GBP-1 is required for avoidance behaviors mediated by ASH neurons while GPB-2 and 

GPC-1 are required for NaCl adaptation [83-85].  

While there is a clear role for heterotrimeric G-proteins in chemosensation in C. 

elegans, nothing is known about their function in parasitic nematodes. Genetic analysis 

has shown that GPAs are present in numerous parasitic species however there appear to 

be fewer when compared to Caenorhabditis spp. indicating this gene family has 

undergone significant gene expansion in Caenorhabditis although this has not been 

confirmed [78].  

Once activated, Gα subunits can interact with guanylyl cyclases (GCY) to 

produce the secondary messenger cyclic guanosine monophasphate (cGMP), which opens 

a cyclic nucleotide-gated channel (CNG channel) leading to an influx of Ca2+ ions into 

the cell [49, 86]. GCYs are multi-domain proteins that occur in two forms; receptor 

guanylyl cyclases (rGCY) and soluble guanylyl cyclases (sGCY) [87]. Both forms 

contain a cyclase domain, however, rGCYs contain an additional protein kinase as well 

as a single transmembrane sequence domain and a signal sequence while sGCYs contain 

a heme nitric oxide-binding domain [88]. Both forms appear to have function in sensory 

behavior in C. elegans; rGCYs may function in chemosensation while sGCYs have roles 

in aerotaxis [49]. 
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In C. elegans, there are 34 guanylyl cyclases of which 27 are rGCYs while seven 

are sGCYs [87]. Many GCYs are expressed exclusively in sensory neurons indicating 

they may have a function in chemosensation [60, 88]. In ASE neurons, gcy genes are 

expressed in a left/right asymmetric manner similar to GPCRs, further implicating them 

in chemosensation [88, 89].  As shown in C. elegans, the rGCYs, ODR-1 and DAF-11 

are expressed in the cilia of AWB and AWC sensory neurons and are required for AWC 

mediated olfaction [60, 90]. In addition, GCY-14 is essential for ASE mediated 

chemotaxis in response to alkaline conditions [86]. While GCYs have been identified in 

several parasitic nematodes there are far less GCYs present in parasites when compared 

to C. elegans, similar to GPAs [87]. For example, only three GCYs have been identified 

in the PPN H. glycines and no function has yet been assigned any of them highlighting 

how little is known about GCY function in parasitic nematode chemosensation [91].   

rGCYs function to produce cGMP which is thought to be the primary secondary 

messenger in chemosensation in C. elegans because activation of a CNG channel 

consisting of TAX-4 and TAX-2 subunits is resistant to cyclic adenosine monophosphate 

(cAMP) [49]. This channel has been shown to be essential for a number of chemosensory 

related behaviors including those involving ASE and AWC neurons [49, 92]. In C. 

elegans, tax-4 genes encode for the α-subunit of the cGMP-gated channel while tax-2 

genes encode for the β-subunit [60]. This channel is essential for numerous sensory 

behaviors including responses to volatile attractants and repellents, chemotaxis to water-

soluble compounds such as NaCl and reactions to preferential food odors [59, 60]. 

Mutants showing loss of expression for tax-2 only in subset of neurons had several 

sensory response defects demonstrating the requirement for the TAX-4/TAX-2 cGMP-
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channel in behaviors such as food foraging, CO2 avoidance and thermotaxis [60]. 

Currently, nothing is known about CNG channels in parasitic nematodes and it remains to 

be seen if this channel is indeed important in chemosensation in these nematodes.  

Transient receptor potential, or TRP, channels can mediate odorant chemotaxis by 

AWA neurons [49]. In C. elegans, osm-9 and ocr-2 encode a TRPV (TRP vanilloid) 

channel, a member of the TRP superfamily [60]. Like the TAX-4/TAX-2 cGMP-channel, 

the OSM-9/OCR-2 channel functions downstream of GPCRs and GCYs and mutants of 

osm-9 or ocr-2 exhibit severe defects to AWA mediated chemosensation [49, 58]. Similar 

to the above components of sensory transduction, nothing about this channel is known in 

parasitic nematodes.  

Use in control of parasitic nematodes  

While numerous studies have shed light on the molecular mechanisms involved in 

chemosensation, we have only begun to navigate the complexity of chemosensory 

behavior in C. elegans. The role of chemosensation in parasitic life styles is even less 

well understood. This behavior is clearly necessary in parasitic life styles, and 

manipulation of chemosensory behaviors in these parasites could disrupt transmission of 

the parasite either to animal or plant. In fact, studies have demonstrated that disruption of 

chemosensory behavior can prevent parasites from finding suitable hosts [93]. For 

example, the acetylcholinesterase inhibiting nematicide aldicarb led to 50% reduction in 

chemosensation in H. glycines at very low doses (10^6 fold lower than required to affect 

locomotion) [93]. It is thought that aldicarb is taken up from the environment by 

chemoreceptive sensillae leading to retrograde dendritic transport to neuronal cell bodies 
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where it binds to and inhibits acetylcholinesterase [93]. This inhibition causes an 

accumulation of acetylcholinesterase at the synapse which results in an over-stimulation 

of the nerve cells leading to paralysis and death at high concentrations [94]. At low 

concentrations, aldicarb does not kill the nematode but instead impairs the nematode’s 

ability to orient towards chemical stimuli from the environment [93]. In parasitic 

nematodes, this impairment may prevent the parasite from identifying and infecting a 

suitable host. That chemosensation is an attractive target for control has also been 

demonstrated in the potato cyst nematode G. pallida [16]. In this case, infectious J2 stage 

nematodes were not attracted to root exudate from transgenic potato plants expressing a 

synthetic peptide (nAChRbp) which binds to nicotinic acetylcholine receptors (nAChR) 

[16]. These studies illustrate that disruption of chemosensation in nematodes can be a 

useful mechanism for control and prevention. A strategy similar to this could be applied 

to vector-borne APNs. For instance, a transgenic mosquito, expressing peptides that 

disrupt chemosensation in a filarial worm such as B. malayi could prevent transmission of 

the parasite to the human host. In addition, this type of strategy could be targeted against 

any receptor that leads to the disruption of chemosensory behavior thus providing the 

means to allow this strategy to “evolve” with the parasite.   

Entomopathogenic nematodes (EPN) are parasites of insects that are used for the 

control of many insect pests [22]. These parasites respond to chemical cues elicited by 

their insect hosts [13]. Manipulation of this behavior could be used to enhance the spread 

of the nematode to targeted insect pests providing a means of control. For example, plants 

secreting compounds that are attractive to EPNs like Heterorhabditis bacteriophora 
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would stimulate the EPN to migrate to the plant thereby bringing the EPN into contact 

with any potential insect pests that could serve as hosts for the EPN. 

Chemosensation is one way in which nematode parasites interact with their 

environment. Through this, the animal receives information from their surroundings but 

this behavior does not explain how these organisms reciprocally provide information 

back to the environment. Parasites must be able to manipulate their environment, which 

requires methods to not only receive signals but to send them out as well. This 

requirement is visibly demonstrated in interactions involving the parasite and the host 

immune response, as well as parasite invasion of hosts. As noted above, worm secretions 

are one means by which parasites manipulate host biochemistry. Another, largely 

unexplored possibility is that parasites may communicate with their environment through 

the use of extracellular vesicles. 

Extracellular vesicles 

Extracellular vesicles (EVs) are small vesicles containing an intricate assortment 

of components including proteins, lipids, nucleic acids and glycans that are released into 

the extracellular environment by a wide variety of cell types. Numerous names have been 

given to EV subtypes including exosomes, microvesicles (MVs), microparticles, 

apoptotic bodies and nanoparticles in an attempt to identify extracellular vesicles based 

on characteristics such as originating cell, size, contents and isolation methods which has 

confounded the literature. To rectify this, the scientific community collectively agreed to 

categorize EVs based on their mode of origin [95].  
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Exosomes, originally identified in reticulocytes in 1983, have a diameter 

generally between 30-120 nm and are formed by inward budding or invagination of late 

endosomes to form multivesicular endosomes (MVEs) containing the nascent exosomes 

[96-99]. Release of exosomes occurs by fusion of the MVE with the plasma membrane 

[96, 98, 99]. MVs, first discovered in 1967, are generally larger than exosomes with sizes 

up to ~1,000 nm in diameter and are formed by direct budding of the plasma membrane 

[100]. Both exosomes and MVs exhibit a right-side-out membrane topology in which the 

cytosolic side of the lipid bilayer is inside the vesicle, and the luminal part of the 

membrane is exposed [98]. While the different biogenic and release pathways of 

exosomes and MVs would imply the cellular machinery responsible is divergent, the 

exact molecular mechanisms involved have yet to be elucidated, although both ESCRT-

dependent and -independent mechanisms have been implicated [101, 102].  

Biological systems contain diverse populations of EVs, and while function is 

often attributed to one specific type or another, extracellular vesicles in circulation are 

likely a heterogeneous mix of EVs because current purification methods, many of which 

are based on differential centrifugation, do not discriminate between these vesicle 

subtypes [101, 103]. Since their discovery, a broad range of cell types have been shown 

to release EVs including: B lymphocytes, dendritic cells, mast cells, stem cells, platelets, 

endothelial cells and breast cancer cells [98, 99, 104-108]. In addition EVs have been 

isolated from cell culture media and diverse body fluids such as blood, semen, urine, 

saliva, amniotic fluid, bile, cerebrospinal fluid, breast milk and ascites fluid [109-117]. 

EVs contain a variety of proteins, RNAs and other bioactive molecules making 

them potent vehicles for cell-to-cell communication. The composition of EV cargo 
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appears to be dependent on both source and target cell environments and has been shown 

to be enriched relative to the cell of origin suggesting that EV cargo is selectively 

incorporated although the exact method of vesicle-loading remains unknown [98, 99, 

104, 105, 118]. Most RNAs identified in EVs are miRNAs. However, EVs also contain 

mRNAs and a large variety of other small noncoding RNA species, including structural 

RNAs, tRNA fragments, vault RNAs, Y RNAs and siRNAs [101, 103]. 

EVs selectively bind to target cells in order to deliver their cargo, and while the 

mechanisms of this selectivity remain to be resolved it appears that both target cell-

dependent and -conditional aspects are involved [101]. After binding to recipient cells, 

EVs can remain bound, dissociate or fuse with the plasma membrane or they can be 

internalized thereby delivering their cargo to the target cell and affecting cell-to-cell 

communication [101].  

EVs have been shown to have a significant impact on target cells in several ways, 

including altering RNA and protein expression as well as impacting the behavior of the 

recipient cell [101]. mRNAs packaged in EVs can be translated into functional proteins 

by the host cell demonstrating the ability of EV cargo to manipulate target cells [104]. 

Since EVs can transport proteins and nucleic acids between cells, it is not surprising that 

they have emerging fundamental roles in cell-to-cell communication [101, 119] but 

further, they also appear to have important roles in immunity and disease pathogenesis. 

For example, EVs have been shown to stimulate tumor progression in cancer metastasis 

while extracellular vesicles secreted by B-cells carry MHC class II molecules which are 

capable of inducing antigen-specific MHC class II-restricted T cell responses [99, 119, 

120].  
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Extracellular vesicles in parasitism  

EVs have generated significant renewed interest because of their involvement in 

immune responses, disease pathogenesis, and roles in cell-to-cell communication [99, 

103, 105]. Although most examples have focused on EV release from mammalian cell 

types, it has been shown that many organisms such as bacteria, fungi, protists and 

nematodes also secrete EVs [121-124]. EVs are quickly becoming attractive candidates 

as mechanisms of gene transfer between parasites and hosts. Through this mechanism, 

parasites may be able to modulate the host environment to the benefit of the parasite. 

A picture is emerging that parasites from widely divergent phyla actively release 

EVs into their environment, and whilst most reports have focused on protozoan parasites, 

this behavior has also been observed in helminth parasites including both platyhelminths 

and nematodes.  As research in this field progresses, it is likely that EV release by 

parasites will appear the rule rather than the exception.  EV secretion has been described 

thus far in the flukes, Dicrocoelium dendriticum and Fasciola hepatica, the cestode 

Echinostoma caproni, the kinetoplastid Leishmania spp. and the flagellate protozoan 

Trichomonas vaginalis [118, 125-127]. Parasites not only release EVs that interact with 

host cells, but they stimulate the release of EVs from host cells as well. Such parasites 

typically have an intracellular stage and include Toxoplasma gondii, Trypanosoma cruzi, 

Plasmodium falciparum and Plasmodium yoelii [124, 128-132]. 

Parasite-derived EVs play an important role in host-parasite communication in 

both helminth and protozoan infections [118]. These EVs are actively taken up by host 

cells, and contain an array of bioactive molecules, including RNAs and putative effector 
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proteins, that can be released in the host cell to affect the outcome of infection [125, 126]. 

In some species, the molecules contained within EVs constitute a significant portion of 

the parasite secretome, and several EV proteins identified, such as tetraspanins and 

peroxiredoxin, are involved in behaviors that may impact infection [118, 125, 126, 133].  

EVs from parasites have immunomodulatory and other properties that may act to 

facilitate and promote host infection. Leishmania spp. EV secretions induce an alternative 

cytokine profile in infected macrophages and may also prime uninfected cells for 

infection, thus augmenting infection in the host [125]. T. vaginalis-derived EVs facilitate 

host-parasite interactions by increasing adherence to endothelial cells in the host, which 

is required for the establishment of infection [126]. The EVs secreted by Plasmodium 

spp. mediate a number of behaviors that enhance infection in the host [124]. Plasmodium 

derived EVs have significant roles in communication between parasites, for instance 

communication between parasites via EVs not only mediated the spread of drug 

resistance in the parasite but also promoted differentiation to sexual forms of the parasite 

[124]. In addition, EVs released by Plasmodium spp. stimulate innate immune responses 

through macrophage and neutrophil activation in humans [132].  

Like protozoan parasites, nematode parasites also use EVs to modulate the host 

immune response [123]. Most recently, EVs secreted by the APN Heligmosomoides 

polygyrus, have been shown to suppress innate immune responses in mice [123]. 

Extracellular vesicles may also function in animal-to-animal communication; EVs 

identified in C. elegans induce mating behavior in male worms [134]. This is the first 

study to demonstrate the involvement of EVs in such behavior and highlights that in 
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addition to already identified roles, extracellular vesicles may play important as of yet 

unexplored roles in animal behavior and communication.  

Applications and future prospects with extracellular vesicles 

Infection with Plasmodium spp. has been shown to lead to the elevation of 

circulating host EVs [135]. In addition, elevated numbers correlated with severity of 

infection (i.e., the more severe the infection the more EVs found circulating) thus 

providing a useful diagnostic tool [136]. Since host-derived EVs carry cargo specific to 

the cell type from which they originate, the elevation of specific host-derived EVs in 

biofluids may serve as biomarkers of different disease states, and this has indeed been 

postulated for non-communicable diseases such as ovarian and prostate cancers [103]. 

Such an application may be of particular value for infections that are not readily detected 

through traditional means or which are asymptomatic. 

The ability of extracellular vesicles to deliver bioactive molecules to specific cells 

or tissues is potentially exploitable as a means for targeted delivery of therapeutics. This 

is especially true with exosomes because their small size allows them to evade 

phagocytosis and rapid clearance [95]. In addition to their potential as vehicles for drug 

delivery, EVs have also shown a protective capacity and may have promise as vaccines 

against bacterial and other diseases [103]. While some pathogens release extracellular 

vesicles that modulate expression of immune related genes, others have been shown to 

induce enhanced immune responses and conferred some protective effects [130, 137]. For 

example, mice vaccinated with purified exosomes from P. yoelii elicited IgG antibodies 

capable of recognizing P. yoelii infected erythrocytes [128]. Upon subsequent challenge 
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with a lethal strain of P. yoelii, vaccinated mice not only survived but also cleared the 

infection, clearly demonstrating the protective effect of the exosome-derived vaccine 

[128]. 

Many proteins identified in parasite-derived EVs appear to contribute 

significantly to successful infection of the host making these proteins attractive targets for 

the development of novel chemotherapeutics [125]. Proteins identified in parasite-derived 

EVs include homologues of pathogen-associated molecular pattern (PAMP) molecules, 

such as peroxiredoxin [118]. Peroxiredoxin has been shown to have immunomodulatory 

properties and therefore is a promising target for chemotherapeutic interventions [133].  

Dissertation organization 

The focus of this dissertation is the nematode parasite and etiological agent of 

Lymphatic Filariasis (LF), Brugia malayi, and how this parasite utilizes chemosensation 

and extracellular vesicles to navigate and manipulate its environment to achieve 

successful infection. Chapter 2 presents an investigation of chemosensory structures and 

behavior in B. malayi. Using SEM, dye-filling assays and chemotaxis plate assays, I 

describe chemosensory anatomy and demonstrate that this nematode parasite has a 

functional chemosensory response that may facilitate host infection. Chapter 3 describes 

a bioinformatic and phylogenetic analysis of heterotrimeric G-proteins, which are known 

to be involved in chemosensation, across the phylum Nematoda. Chapter 4 demonstrates 

the presence of exosome-like vesicles (ELVs), a specific subtype of EV, in B. malayi and 

further characterizes these vesicles through the characterization of both protein and RNA 

cargo found within. In the final chapter, key findings from the research chapters are 
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summarized along with general conclusions and discussion of implications of the 

contained research including the development of novel therapeutics for prevention and 

treatment of LF. 
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Abstract 

Lymphatic Filariasis (LF) is a disease caused by mosquito-borne filarial 

nematodes including Wuchereria bancrofti and Brugia malayi. Over 120 million people 

suffer from this disfiguring disease yet chemotherapeutic options for LF are limited to 

three drugs: diethylcarbamazine citrate (DEC), albendazole and ivermectin, none of 

which cure an infected patient.
 

The threat of drug resistance, combined with adverse side 

effects and inefficacy against critical life stages, drives the need for new anthelmintic 

drugs. Chemosensation is an essential behavior used by multi-cellular organisms to 

interact with the environment. In the model free-living nematode Caenorhabditis elegans, 

chemosensation plays a crucial role in development, avoiding noxious conditions and 

finding food and mates. In parasitic nematodes, chemosensation likely plays critical roles 

in host-seeking and host-invasion behaviors, making genes involved in this system 

attractive targets for drug or vaccine development. Little is known, however, about the 
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chemosensory system in filarial nematodes. In this study, we examined the chemosensory 

apparatus of B. malayi and elucidate chemosensory-induced behavior during the 

infectious L3 stage of the parasite. Scanning electron microscopy revealed that amphids, 

the major chemosensory organs of nematodes, are present and arranged in a conserved 

manner while internal sensory neuroanatomy was examined using fluorescent 

microscopy in both juvenile and adult stages of B. malayi. Finally, a cohort of chemical 

compounds tested using a plate-based chemotaxis assay, were shown to elicit specific 

tactic behaviors that may facilitate infection with B. malayi L3 stage parasites. 

Combined, these results are the first to demonstrate that B. malayi has a responsive 

chemosensory pathway and also indicate that the chemosensory response in B. malayi 

may have an important role in parasite transmission and host invasion.  

Introduction 

Chemosensation is essential for organisms to perceive the outside environment [1, 

2]. This vital process begins with the detection of environmental compounds by 

chemoreceptors, which are most commonly G protein-coupled receptors (GPCRs) [2]. 

Receptor binding leads to the activation of chemosensory neurons and ultimately to the 

activation of motor neurons resulting in a physical response to the detected stimulus [2]. 

While the fundamental process of chemosensation is conserved across organisms, 

comparison of chemosensory systems in insects, nematodes and all higher animals has 

revealed some fundamental differences. In Caenorhabditis elegans adult hermaphrodites, 

only 32 neurons are presumed to be chemosensory neurons [3-5]. This is in stark contrast 

to Drosophila melanogaster which has ~2600 olfactory neurons and mammals which 

have millions of odorant sensory neurons [2, 6, 7]. Even though C. elegans is limited to a 
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small number of chemosensory neurons, this nematode encodes genes for more than 1000 

putative chemoreceptors [2, 8]. Thus, the small number of chemosensory neurons in C. 

elegans has led to the employment of a different strategy in chemoreceptor expression. 

Unlike vertebrates and insects, which follow a functionally similar arrangement of one or 

few receptor genes per neuron, nematodes express many chemoreceptors in each 

chemosensory neuron, thus enabling the detection of a wide array of compounds with 

remarkable precision [2, 9].  

Chemosensory behavior in nematodes has been characterized primarily through 

the study of the free-living model C. elegans [4, 10-12]. These studies have demonstrated 

that C. elegans has a robust chemosensory response with the ability to sense and respond 

to hundreds of compounds [13, 14]. Olfactory cues elicit a number of important 

behaviors in nematodes; in C. elegans, these cues have been shown to be involved in 

finding food and mates, avoiding noxious conditions and entry/exit into the dauer stage 

[1, 12]. In contrast, research investigating chemosensation in parasitic nematodes is very 

limited but there is evidence that chemosensation is critical for both host-seeking and 

host-invasion behaviors [15-17]. For example, the infective stages of skin penetrating 

parasitic nematodes such as Strongyloides ratti and Ancylostoma caninum exhibit 

positive chemotaxis to host serum, which may provide a positive stimulus for skin 

penetration and thereby facilitate transmission and infection [18-20]. In addition, studies 

in both plant- and animal-parasitic nematodes have shown that chemosensation in these 

animals is used to identify a suitable host, and this behavior varies depending on host 

preference [15, 16, 21, 22]. Collectively, these findings support the hypothesis that 
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chemosensation is important for the transmission and establishment of infection of 

parasitic nematodes in their hosts. 

Successful infection of a host requires nematode parasites to rapidly adapt to 

diverse physical and biochemical environments. To establish infection, filarial worms 

such as Brugia malayi must be able to penetrate the host then identify and invade 

appropriate host cells and tissues, as well as avoid or suppress the immune response in 

both mosquito and human hosts. To date, very little is known about chemosensory 

behavior in filarial worms and how this facilitates establishment of infection. Research 

has been limited to the infectious L3 stage of the feline parasite B. pahangi, which is 

attracted to host serum and sodium ions in a concentration dependent manner [23-25].  

Here we characterized chemosensory structures and behavior in the human filarial 

parasite B. malayi. Scanning electron microscopy was used to identify the presence of the 

anterior chemosensory organs, the amphids, across multiple life stages in B. malayi. In 

addition, we visualized internal sensory neuroanatomy through the use the lipophilic dye, 

1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI). Finally, we 

evaluated the response of infectious stage parasites to compounds present in both human 

and mosquito hosts using a modified agar plate assay. The results presented here 

demonstrate that B. malayi has a functional chemosensory response and displays tactic 

behaviors to specific stimuli such that transmission from the mosquito vector to the 

human host may be facilitated. A better understanding of chemosensation in filarial 

worms will not only provide insight into mechanisms of transmission and establishment 

of infection but may also lead to the development of novel strategies for disruption of 

parasite transmission from mosquito to human hosts.  
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Materials and Methods 

Mosquito maintenance 

Adult female Aedes aegypti (Black eyed Liverpool strain, LVP) that were 

previously selected for susceptibility to infection with Brugia malayi [26], were fed a diet 

of 10% sucrose and maintained in controlled conditions (27°C ± 1°C and 75% ± 5% 

relative humidity) with a 16:8 photoperiod.  

Establishment of Brugia malayi infection and parasite collection 

B. malayi - infected cat blood was obtained from the University of Georgia 

NIH/NIAID Filariasis Research Reagent Resource Center (FR3). Blood containing the 

parasites was diluted with defibrinated sheep blood (Hemostat Laboratories, CA, USA) to 

achieve a concentration of 150-250 mf per 20 µl. To establish infection, three- to five-

day-old female Ae. aegypti (LVP) were allowed to feed for one hour on a glass 

membrane feeder. Mosquitoes were sucrose-starved for 24 hrs prior to blood feeding and 

those that did not take a blood meal were removed. Infected mosquitoes were maintained 

under the conditions described for 12-19 days post infection (dpi) to allow development 

of parasites to the L3 stage. 

To collect L3 stage parasites, infected adult female Ae. aegypti were cold- 

anesthetized on ice and dissected into three sections (head and proboscis, thorax and 

abdomen) in separate drops of room temperature Aedes physiological saline, and 

parasites were allowed to migrate out of the mosquito into the saline solution [27]. In 

addition to L3 parasites harvested in-house, we also obtained supplementary L3, L4, 

adult male and adult female stages from FR3 for scanning electron microscopy, 
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fluorescence staining and chemotaxis plate assays. During L3 chemotaxis studies, no 

difference in movement or behavior was observed between L3s freshly collected from 

infected mosquitoes and those obtained from FR3.  

Scanning electron microscopy 

Samples were fixed in 1.5 mL microcentrifuge tubes with 2% paraformaldehyde 

and 2% glutaraldehyde (Sigma-Aldrich, St. Louis, MO, USA) in 0.1 M cacodylate buffer 

(Thermo Fisher Scientific, Waltham, MA, USA), pH 7.2, for 24 hrs at 4°C. Samples were 

rinsed four times with the same buffer and post-fixed in 2% aqueous osmium tetroxide 

(Sigma-Aldrich) for 24 hrs. Specimens were then rinsed four times with the same buffer 

followed by dehydration in a graded ethanol series (10, 30, 50, 70, 90, 95, 100, 100, 

100%), each step for 15 min. Finally, samples were dried using an ultrapure ethanol and 

carbon dioxide in a critical point drying apparatus (Denton Vacuum DCP-1, Denton 

Vacuum, LLC, Moorestown, NJ USA). Dried samples were stored in a desiccator or 

adhered to aluminum stubs using double-stick tape and silver paint. The samples were 

sputter-coated (Denton Desk II sputter coater, Denton Vacuum) with 120 nm palladium-

gold (60:40). Samples were viewed with a scanning electron microscope (JEOL 5800LV) 

at 10–13 kV in the Microscopy and NanoImaging Facility, Iowa State University. Images 

were captured using a SIS ADDA II (Olympus Soft Imaging Systems Inc., Lakewood, 

CO, USA). 

Dye filling assays 

Staining of live animals (L3, L4, adult male and adult female) was performed 

using 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI, Thermo 
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Fisher Scientific, Waltham, MA, USA). Worms were washed using RPMI 1640 (Thermo 

Fisher Scientific, Waltham, MA, USA) containing pen-strep (0.4 units penicillin/ml, 0.4 

mcg streptomycin/ml). L3, L4, adult female and adult male B. malayi were then placed 

into clean RPMI containing DiI (10 µg/ml) and pen-strep (0.4 units penicillin/ml, 0.4 mcg 

streptomycin/ml) and incubated at 37°C for 16-24 hrs. After staining, animals were 

washed twice with RPMI 1640 containing pen-strep and visualized using a Nikon Eclipse 

50i compound fluorescent microscope (Nikon, Japan). 

Chemotaxis plate assays 

Chemotaxis assays were prepared as described in Margie et al. [28] with minor 

modifications: 35 mm plates containing 0.8% agarose were divided into four equal 

quadrants. A circle with a diameter of 3 mm was marked around the origin to designate 

the center. A circle was placed in each quadrant 5mm away from the center. Each 

quadrant was designated with a T1 or T2 for test or a C1 or C2 for control (Figure 1). 

Assays were performed by placing 2 µl of the test compound into the circles in T1 and T2 

quadrants and 2 µl of the control compound (water or paraffin oil) in the circles in C1 and 

C2 quadrants. Up to seven L3s were positioned in the center in 2 µl of water and the 

assay plates were placed uncovered at 35°C ± 3°C and left undisturbed on a vibration 

reducing platform for 30 minutes.  

To constitute a full experiment (N), chemotaxis plate assays were run until at least 

50 parasites had shown a response to the compound tested by moving either into the test 

or control quadrants. Three experiments were performed for each compound tested. 

Chemotaxis index (CI) for each experiment was calculated as: CI = [(total # of L3s at T1 
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and T2) - (total # of L3s at C1 and C2)]/[(total # of L3s at T1 and T2) + (total # of L3s at 

C1 and C2)]. L3s that did not move out of the center were not scored. Scoring ranged 

from -1.0 for maximal repulsion to +1.0 for maximal attraction. Liquid compounds were 

tested undiluted. Solid compounds were resuspended at a 1 M concentration with the 

exception of Aedes saline which was prepared as described in Hayes [27] and contained 

154 mM NaCl, 1.36 mM CaCl2, 2.68 mM KCl, 1.19 mM NaHCO3.  

Statistical analysis 

For analysis of chemotaxis plate assays, unpaired two-tailed t-tests were used to 

compare C.I. of test compounds to C.I. of control compounds. All statistical analyses 

were performed using Prism 6 for Mac (GraphPad). 

Results and Discussion 

B. malayi possess conserved chemosensory structures. 

The primary chemosensory organs in nematodes are the amphids, which are a pair 

of lateral structures located anteriorly on either side of the mouth of the nematode [3, 22, 

29-31]. Scanning electron microscopy (SEM) was used to determine if amphids are 

present in B. malayi. SEM revealed the presence of amphids in all life stages examined 

(L3, L4, adult male and adult female) (Figure 2). Amphid pores in B. malayi are narrow, 

crescent-shaped openings that are less prominent than those found in C. elegans but 

similar to what has been previously observed in both Onchocerca lupi and O. eberhardi, 

two species closely related to B. malayi [32, 33].  
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Amphid pore shape is highly variable among nematodes and while the 

significance of this is unknown, it may be that the more convoluted shapes are functional 

and enhance the sensitivity of these organs as chemoreceptors. C. elegans, which has a 

very sensitive chemosensory response, is capable of detecting and responding to 

hundreds of different chemical cues [13]. In fact, C. elegans chemosensation is so 

sensitive that these nematodes are able to distinguish between bacteria that are food 

sources and those that are pathogenic [34]. Furthermore, these worms also respond to 

environmental compounds in a concentration-dependent manner and exhibit adaptive 

behavior when pre-exposed to chemical compounds [35, 36]. Compared to C. elegans, B. 

malayi may be exposed to fewer chemical stimuli, which may not necessitate highly 

sensitive chemoreceptors. Indeed, it has been observed that amphids of animal-parasitic 

nematodes (APNs) are often less pronounced than those of free-living nematodes, thus 

providing support for this hypothesis [37]. 

While not the focus of this study, it was observed that B. malayi possess fewer 

cephalic papillae (four inner labial sensilla and four outer labial sensilla) (Figure 2) than 

C. elegans (six inner labial sensilla, six outer labial sensilla and four additional cephalic 

sensilla), which is considered to have the classical arrangement of cephalic papillae [3, 

38]. Similar to B. malayi, O. eberhardi also exhibits a reduction in anterior papillae [33] 

indicating that this reduction may be a feature common to filarial worms. This disparity 

in structures that are thought to be primarily mechanosensory could indicate filarial 

nematodes have a reduced mechanosensory response. 

To further characterize the sensory neuroanatomy present in B. malayi, dye-filling 

assays using the lipophilic dye DiI were performed. Dye-filling, which was originally 
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developed by Hedgecock et al. in 1985, is a common method used to visualize sensory 

neuroanatomy in nematodes [39]. While the mechanisms behind dye-filling have yet to 

be fully elucidated, defects are associated with abnormal ciliary ultrastructure [30]. Dye-

filling patterns varied across life stages in B. malayi. Amphid channel staining was 

observed in all life stages tested and could be readily discriminated using light 

microscopy (Figure 3).  In addition to the amphid channels, sheath cell bodies took up 

DiI in L3, adult male and adult females (Figure 3b, h, k), while socket cell bodies were 

detected in L3 stage parasites (Figure 3b). The nerve ring filled with DiI in all but adult 

male B. malayi (Figure 3b, e, k). Of note, no amphidial neurons were found to take up DiI 

in any life stage (Figure 3). This is a distinct departure from C. elegans in which six 

amphid neurons (ASH, ASI, ASJ, ASK, ADL and AWB) can be observed using DiI [40]. 

Although the neuroanatomy of nematodes is highly conserved, these differences in dye-

filling patterns may indicate variation in neuroanatomy at the cellular level. 

While our observations contrast to what has been observed for a number of free-

living nematodes, they are comparable to what has been observed in other parasitic 

nematodes. Dye-filling assays in Parastrongyloides trichosuri, a parasite of Australian 

brush-tailed possums, detected only one amphid neuron (ASL) pair [41]. More recently, 

Han et al. (2015) investigated dye-filling patterns of several other parasitic nematode 

species [42]. The authors found that staining patterns in parasites were often reduced 

compared to their free-living counterparts [42]. This observation held true regardless of 

preferred host or invasion strategy, for example amphid neurons of the soybean cyst 

nematode, Heterodera glycines, and the root knot nematode Meloidogyne hapla, did not 

stain [42]. In addition, no dye-filling was observed in the amphid neurons of the 
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infectious juvenile (IJ) stage of the entomopathogenic nematode Heterorhabditis 

bacteriophora, and only periodic staining of these neurons was detected in non-IJ stages 

[42]. The reductions of sensitivity to dye-filling in parasitic nematodes suggest possible 

structural modifications to the sensory neurons of these nematodes. Notably, although 

dye-filling patterns are not representative of phylogeny, there appears to be some 

commonalities that are indicative of life style (parasite vs. free-living). This raises the 

possibility that underlying structural or biochemical differences in chemosensory 

structures may be required for a parasitic life strategy and could be exploited in the 

pursuit of novel methods of control.    

Host-derived gustatory and olfactory compounds elicit specific tactic behaviors in 

L3 stage B. malayi 

A number of sensory neurons are involved in nematode chemosensory responses 

such that each type of neuron recognizes different categories of molecules [43]. The 

primary taste receptor neurons in C. elegans are the ASE amphid neurons [10, 14, 43]. 

These neurons are required for responses to a number of gustatory cues such as salts, 

amino acids and other water soluble molecules [10]. Sodium chloride has been shown to 

elicit behavioral responses in C. elegans demonstrating that this is a gustatory compound 

[44]. In contrast to gustatory compounds, responses to odorants (volatile compounds) are 

mediated by the olfactory neurons, AWA, AWB and AWC, in C. elegans [11, 14]. 

Olfaction is crucial for a number of parasitic organisms, such as mosquitoes, which often 

identify hosts primarily through olfactory cues [45, 46]. The identification in B. malayi of 

both the ultrastructure and neuroanatomy required for chemosensation (Figures 2 and 3), 

led us to question whether or not environmental cues could elicit behavioral responses in 
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B. malayi and if these responses have a role in parasite invasion and, consequently, 

transmission. We therefore sought to interrogate responses to both gustatory and 

olfactory compounds in infectious B. malayi L3 stage parasites using chemotaxis plate 

assays (Figure 1). B. malayi L3s were strongly attracted to the gustatory compound 

sodium chloride (NaCl) (mean C. I. = 0.55, p < 0.01) when compared to water controls 

(Figure 4). It should be noted that the concentration of NaCl used here was high (1M), 

however the chemotaxis plate assays used allow for diffusion of water-soluble 

compounds, thereby, creating a gradient. It is likely that parasites were responding to an 

“ideal” concentration within the gradient. That said, previous studies have shown that 

when placed in a low NaCl concentration, the skin-penetrating parasite Strongyloides 

stercoralis will migrate up the gradient to NaCl concentrations as high as 1.1M [47].  

Studies using parasitic nematodes such as S. stercoralis suggest that 

chemosensation plays an essential role in host-selection and invasion [15]. To determine 

if chemosensation plays a role in B. malayi host-invasion, we assayed responses of L3 

stage worms to a number of host-derived compounds. Parasites were attracted to L-lactic 

acid (mean C. I. = 0.32, p < 0.05) (Figure 5), a compound produced in the muscles of 

humans. Interrogation with additional host-derived odorants revealed that both 3-methyl-

1-butanol (mean C. I. = -0.21, p < 0.01) and 1-nonanol (mean C. I. = -0.21, p < 0.05) are 

repellent to B. malayi L3 stage parasites (Figure 6). In addition to host-derived volatiles, 

we also examined the response of L3 stage B. malayi to more complex host compounds 

such as human serum. L3 stage parasites were strongly attracted to Aedes saline (mean C. 

I. = 0.36, p < 0.05), fetal bovine serum (FBS) (mean C. I. = 0.49, p < 0.01) and human 

serum (mean C. I. = 0.4, p < 0.01) (Figure 7). No difference was found in the parasite 
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response to Aedes saline, FBS or human serum. Bovids are not hosts for B. malayi so 

although these compounds are attractive to this parasite, they are unlikely to dictate host 

specificity.   

To our knowledge, this is the first report to demonstrate that filarial nematodes 

exhibit specific tactile behaviors in response to host-derived odorants and the first to 

demonstrate chemosensory responses to host-derived compounds in B. malayi. Of note, 

both 3-methyl-1-butanol and 1-nonanol, which are human skin and sweat odorants and 

are known mosquito attractants, repelled L3 stage parasites [46, 48-52]. In contrast, 

physiologic saline that mimics the internal environment of the mosquito (Aedes saline) 

and human host compounds (L-lactic acid and human serum) were attractive. Together, 

these results indicate chemosensation in this nematode that may be important in 

transmission of this parasite by providing both positive and negative stimuli to encourage 

host penetration. In contrast to S. stercoralis, which actively seeks out a suitable host, B. 

malayi L3s are transmitted to human hosts through the bite of an infected mosquito. 

When the mosquito takes a blood meal, these worms migrate out of the proboscis onto 

the skin and crawl into the wound track left by the blood-feeding mosquito. In contrast, S. 

stercoralis must actively seek out a suitable host, so these parasites are strongly attracted 

to 3-methyl-1-butanol, 2-methyl-1-butanol and 1-nonanol, all of which are compounds 

found in human sweat [15]. Unlike B. malayi L3s, IJ stage S. stercoralis are soil dwelling 

nematodes, and it is likely that these and other host-derived compounds direct this 

parasite to a suitable host, where B. malayi is delivered directly onto the host skin and has 

to rapidly enter before it desiccates and dies. The results presented here indicate that B. 

malayi either have no response to, or are repelled by compounds found in human sweat. 
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This negative response may facilitate transmission of the parasite by acting as a stimulant 

to move away from the host surface and drive skin penetration while the attractive 

response to serum and L-lactic acid may act as a “beacon” to direct the parasite to the 

wound track left by the mosquito vector. Additional research will reveal the molecular 

mechanisms involved in this behavior and characterize the precise role that 

chemosensation plays in transmission of this parasite. Elucidation of this behavior may 

lead to the development of novel methods of control for these parasites.  
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Figure 1. B. malayi chemosensory behaviors are profiled using plate-based 
chemotaxis assays. Schematic of chemotaxis assay used. Infectious L3 B. malayi are 
placed in the center (CE) and allowed to distribute over the plate. After 30 minutes the 
number of parasites in T1, T2 (test compounds), C1 and C2 (control compounds) are 
counted and the chemotaxis index (C.I.) is calculated as indicated. Two plate 
arrangements were used to minimize any external or directional bias.  
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Figure 2. B. malayi parasites have conserved sensory ultrastructures across multiple 
life stages. Scanning electron images of the anterior portion of (A) L3, (B) L4, (C) adult 
male and (D) adult female B. malayi are shown. These data reveal that all life stages 
examined possess amphid pores (arrows) and cephalic papillae (arrow heads). Scale bars: 
5 µm (A and B), 10 µm (C and D) 
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Figure 3. DiI staining reveals sensory neuroanatomy of B. malayi. Fluorescent images 
of anterior sensory structures in B. malayi using DiI stain show sheath cell bodies (closed 
arrowheads), nerve ring (open arrowheads), dendrites (white arrows), axons (yellow 
arrow) and socket cell bodies (star). Images are from L3 (A-C), L4 (D-F), adult male (G-
I) and adult female (J-L) B. malayi. A-F show lateral views while G-L show dorsal-
ventral views. Total magnification: 900x (A-F) and 150x (G-L). Scale bars: 10 µm (A-F) 
and 100 µm (G-L) 
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Figure 4. B. malayi is strongly attracted to sodium chloride. B. malayi L3 stage 
parasites are attracted to 1M sodium chloride (NaCl) when interrogated using chemotaxis 
assay plates. Statistical analysis: unpaired two-tailed t-test. **, p-value < 0.01 relative to 
control (H2O). N = 3. 
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Figure 5. B. malayi is attracted to L-lactic acid. B. malayi L3s are attracted 1M L-lactic 
acid but are not significantly repelled by ethanol (EtOH). Arrows indicate responses that 
are either attractive or repellent. Statistical analysis: unpaired two-tailed t-test. *, p-value 
< 0.05 when compared to control (H2O). N = 3. 
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Figure 6. B. malayi is repelled by odorants present on human skin. L3 stage B. malayi 
are repelled or are neutral to a number of compounds found in human skin and sweat. 
Statistical analysis: unpaired two-tailed t-test. **, P-value < 0.01*, P-value < 0.05 relative 
to control (paraffin oil). N = 3. 
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Figure 7. B. malayi is attracted to host-derived compounds. Complex compounds 
found within host such as serum are attractive to B. malayi L3s. However, no significant 
difference is found in B. malayi attraction to specific compounds indicating that these 
compounds do not dictate host specificity. Aedes saline composition: 154 mM NaCl, 1.36 
mM CaCl2, 2.68 mM KCl, 1.19 mM NaHCO3 [3, 22, 29, 30, 44, 53]. Statistical analysis: 
unpaired two-tailed t-test. **, P-value < 0.01 *, P-value < 0.05 relative to the control 
(H2O). N = 3 
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CHAPTER 3 

MOLECULAR PHYLOGENETICS OF HETEROTRIMERIC G-

PROTEINS REVEAL A NOVEL γ SUBUNIT IN PHYLUM 

NEMATODA  

Lisa M. Fraser1,2, Nicolas J. Wheeler1, Lyric C. Bartholomay2* and Michael J. Kimber1 

1Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States 

of America, 2Department of Entomology, Iowa State University, Ames, Iowa, United 

States of America, *Current Address:  Department of Pathobiological Sciences, 

University of Wisconsin-Madison, Madison, Wisconsin, United States of America 

Abstract  

Background 

Heterotrimeric G-proteins, which are composed of α, β and γ subunits, play an 

integral role in G-protein signaling, which is involved in a number of essential behaviors 

in nematodes, including chemosensation. Previous research identified 22 heterotrimeric 

G-protein α subunits (GPAs), 2 heterotrimeric G-protein β subunits (GPBs) and 2 

heterotrimeric G-protein γ subunits (GPCs) in the C. elegans genome. Of the GPAs 

identified, most have no clear homologs outside of phylum Nematoda and, therefore, are 

considered to be “nematode-specific”. In contrast, GPBs in nematodes are highly 

conserved, even with organisms at great evolutionary distances, such as humans, while 

GPCs are very divergent, having no clear human homologs.  
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Results 

Using the most comprehensive dataset available, we identified more than 1000 C. 

elegans GPA homologs and over 100 GPB and GPC homologs in various nematodes 

representing four clades (I, III, IV, and V) and two classes (Chromadorea and Enoplea). 

We show that nematode-specific heterotrimeric G-protein α subunits (GPAs) have 

expanded in class Chromadorea but not in class Enoplea. In addition, we determined that 

parasitic nematodes, such as Brugia malayi, possess far fewer nematode-specific GPAs 

than free-living nematodes. Further, heterotrimeric G-protein β subunits (GPBs) were 

found to be remarkably conserved within phylum Nematoda and fell within expected 

divisions (GPB-1 and GPB-2). Finally, we identified a novel heterotrimeric G-protein γ 

subunit (GPC-3) throughout the phylum, which was notably absent in Caenorhabditis 

spp.  

Conclusion  

G-protein signaling is involved in mediating numerous essential functions in 

nematodes, including chemosensation. Heterotrimeric G-proteins play a central role in 

these signal transduction pathways. Bioinformatic and phylogenetic analysis reveals 

nematodes have a diverse repertoire of heterotrimeric G-proteins. This work provides a 

basis for understanding basic nematode biology as well as highlights a potential set of 

targets that may be exploited for control of animal and plant parasitic nematodes. 

Background 

G-protein signaling pathways are a major mechanism used by eukaryotes to 

process extracellular signals and to translate those signals into cellular and subcellular 
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actions. Heterotrimeric G-proteins, which are composed of α, β and γ subunits, are the 

defining components of G-protein signaling. These proteins act as molecular switches 

that transduce signals from membrane bound G protein-coupled receptors (GPCRs) to a 

variety of intracellular effectors [1, 2]. In the inactive state, the G-protein α subunit 

(GPA) is bound to GDP (Gα-GDP) which promotes association between Gα-GDP, the 

Gβγ dimer and the cytoplasmic portions of GPCRs [3-5]. Once activated, GDP is 

released, which frees the α subunit to bind GTP (Gα-GTP); this event induces a 

conformational change in three flexible switch regions leading to the dissociation of Gα-

GTP from the Gβγ dimer [4, 6]. Dissociated Gα-GTP and the Gβγ dimer can then each 

relay signals to activate a variety of downstream effectors [1, 4]. Termination of signaling 

occurs via hydrolysis of GTP by intrinsic GTPase activity of the GPA, which then can 

return to its inactive state, associated with Gβγ and the GPCR [1, 4, 7].  

Heterotrimeric G-proteins are highly conserved even between evolutionarily 

distant organisms, from protists to mammals [8-11]. In humans, heterotrimeric G-protein 

α subunits (GPAs) are divided into four classes (Gαs, Gαi/o, Gαq and Gα12) based on the 

intracellular signaling pathways they activate [9-12]. Interrogation of the genome 

sequence of the nematode Caenorhabditis elegans revealed the presence of 22 GPAs, 

while phylogenetic analysis identified at least one homologue for each of the four classes 

found in humans (GSA-1, Gαs; GOA-1, Gαi/o; EGL-30, Gαq and GPA-4, 12 & 16, Gα12) 

suggesting general conservation of these four classes [8, 13, 14]. The remaining 16 GPAs 

(GPA 1-3, 5-11, 13-15, 17-18 and ODR-3) comprise a divergent class that is specific to 

nematodes [8, 13, 15]. Further investigation of these “nematode-specific” GPA genes 

revealed that 14 (gpa 1-3, 5-6, 8-11, 13-15 and odr-3) are expressed exclusively in 
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sensory neurons, suggesting that nematode-specific GPAs have a role in sensory 

behaviors such as chemosensation [8, 13, 16]. The C. elegans genome also encodes two 

G-protein β subunits (GPBs) [17, 18]. Both GPBs are expressed in most neurons but their 

functions appear to be very different. GPB-1 is essential for C. elegans development and 

taste adaptation, while GPB-2 functions in behaviors such as pharyngeal pumping and 

egg-laying [18-20]. Only two G-protein γ subunits (GPCs) have been identified in C. 

elegans, neither of which has a clear human homolog [20, 21]. Gpc-1 expression is 

restricted to sensory neurons implying a function in chemosensation, while gpc-2 is 

expressed in all neurons and muscles [20]. GPC-1 plays a role in plasticity to nematode 

responses to both salt and Cu2+ ions, illustrating its function in chemosensation [20, 22].  

Much of what is known about heterotrimeric G-protein function in nematodes is 

restricted to research conducted in C. elegans. Studies in parasitic nematodes are 

incredibly limited and often restricted either to G-proteins that are broadly conserved 

such as homologs of the Gαs, Gαi/o, Gαq and Gα12 subfamilies or to the identification of 

nematode-specific GPAs in specific species such as Acanthocheilonema viteae and 

Strongyloides stercoralis [8, 23, 24]. In order to better understand the heterotrimeric G-

protein complement in nematodes, we conducted a pan-phylum search for these 

important signaling molecules in phylum Nematoda. Using a dataset that included over 

70 nematode genomes representing four clades (I, III, IV and V) and both classes 

(Chromadorea and Enoplea), we show that several GPAs are broadly conserved 

throughout Nematoda. Further, we found that GPBs are remarkably conserved throughout 

phylum Nematoda. In addition, we determined that GPC-1 and GPC-2 were generally 

conserved throughout Nematoda. Finally, we identified a novel G-protein γ subunit 
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(GPC-3) that is present throughout Nematoda but notably absent in Caenorhabditis 

species. Increasing our understanding of these essential genes will not only provide 

insight into the biology of nematodes but may also identify novel targets that can be 

exploited for the development of new strategies of control for parasitic nematodes.  

Materials and Methods 

BLAST analysis 

We downloaded the most recent versions of genomes and predicted proteins for 

more than 70 nematode species from Wormbase and Wormbase-Parasite [25] (Table 1). 

The representative nematode genomes were drawn from four clades (I, III, IV, and V) 

and two classes (Chromadorea and Enoplea). This overall dataset included free-living, 

plant and animal parasitic nematodes. Using C. elegans heterotrimeric G-protein amino 

acid sequences as our query sequences (Table 2) and predicted proteins from each 

nematode species as our subject sequence, we employed Basic Local Alignment Search 

Tool (blastp) to identify the top hits in each species. The resulting candidate 

heterotrimeric G-protein amino acid sequences were aligned using the MUSCLE multiple 

sequence alignment program [26] and manually curated to improve reliability of 

downstream analysis (Table 2). Manual curation included the removal of duplicate or 

severely truncated sequences and removal of any regions of poorly aligned sequence. The 

resulting alignment was used to generate probabilistic hidden Markov models (profile 

HMMs) using HMMER-3.1b2 [26, 27].  
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Post BLAST analysis 

Using the multiple sequence alignments generated earlier, we employed 

HMMER-3.1b2 to build profile HMMs that were used as query sequences to identify 

homologous sequences in each of the genomes analyzed. Profile HMMs are probabilistic 

models that can be used to query sequence databases to identify homologous sequences 

[27]. This method is advantageous over BLAST analysis because of the underlying 

strength of its probabilistic inference methods, which facilitate the detection of remote 

homologs [27-29]. Profile HMMs were used as queries to identify homologous sequences 

in each nematode species using HMMsearch. Results were ranked according to e-value 

with our primary cutoff value set at the point where subsequent hits showed significant 

homology to other known proteins (Table 2). We identified this cutoff with a blastp 

search of all hits against the NCBI non-redundant (nr) database. The resulting datasets 

were used to generate multiple sequence alignments that would then be used for the 

generation of phylogenetic trees.  

Phylogenetic analysis 

 GPA, GPB and GPC multiple sequence alignments were generated using the 

MUSCLE multiple sequence alignment program [26]. Resulting alignments were 

manually curated to remove any duplicates and false positives in order to improve 

reliability of the subsequent phylogenetic trees that were generated (Table 2). G-Blocks 

was then used to remove any poorly aligned or especially divergent regions of the 

multiple sequence alignments [30, 31]. Using the trimmed alignments, phylogenetic trees 

were constructed by maximum likelihood employing Randomized Axelerated Maximum 
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Likelihood (RAxML) using the general time-reversible (GTR) substitution matrix and 

visualized and edited with FigTree (http://tree.bio.ed.ac.uk/software/figtree/) [32, 33]. 

Phylogenetic trees shown here are the best-scoring maximum likelihood trees based on 

100 bootstrap replicates. 

Relative Semi-quantitative multiplex RT-PCR 

 Microfilariae (mf), L3, L4 adult male (AM) and adult female (AF) B. malayi were 

provided by the University of Georgia NIH/NIAID Filariasis Research Reagent Resource 

Center (FR3). Total RNA was extracted from mf, L3, L4, AM and AF B. malayi using 

RNAqueous Total RNA Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) 

and quantified using a NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) 

prior to use. The resulting RNA served as a template for relative semi-quantitative 

multiplex RT-PCR using the SuperScript III one-step RT-PCR system with Platinum Taq 

DNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA). The principle behind 

this reaction is to PCR amplify a target gene and compare its intensity to a multiplexed 

internal control during the linear phase of the reaction. The QuantumRNA Universal 18S 

internal standard (Thermo Fisher Scientific, Waltham, MA, USA) was used as the 

internal control. The oligonucleotide primers used for each gene are shown in Table 3. 

PCR reactions (50 µL) were carried out for each gene using the PCR conditions: cDNA 

synthesis at 50°C for 30 minutes, initial denaturation at 94°C for five minutes, 28 (gpc-1 

& gpc-3) or 29 (gpc-2) cycles of 94°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 

seconds followed by a final extension phase of 72°C for 5 minutes. Reactions were 

visualized on a 2% agarose gel containing ethidium bromide. 
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Results and Discussion  

The advent of the 50 Helminth Genomes Initiative (Helminth Genomes 

Consortium, unpublished) and the Wormbase-Parasite project [25] has allowed access to 

an unprecedented number of nematode genomes for analysis. In this study, we used a 

blastp approach interfaced with hidden Markov models to identify putative homologs to 

C. elegans GPAs, GPBs and GPCs. Using this approach we identified over 1000 G-

protein α subunit homologs, 144 G-protein β subunit homologs and 151 G-protein γ 

subunit homologs in more than 70 nematode species, representing four clades (I, III, IV 

and V) and both classes (Chromadorea and Enoplea). We believe these results represent 

the most comprehensive analysis of heterotrimeric G-proteins in nematodes to date.  

G-protein α-subunits 

 Previously, 22 GPAs were identified in C. elegans, of which 16 (GPA 1-3, 5-11, 

13-15, 17-18 and ODR-3) are considered nematode-specific [8, 13]. Since then, the vast 

majority of GPA sequence and functional analysis has been based in Caenorhabditis 

species, with only a very limited number of nematode-specific GPAs identified from 12 

species of parasitic nematodes, none of which have been functionally characterized [8]. 

These studies which were primarily limited to Caenorhabditis began to reveal a lineage 

expansion of nematode-specific GPAs in phylum Nematoda [8]. Further analysis using 

ESTs from 12 nematode species spanning four clades revealed the presence of nematode-

specific GPAs in all of these species suggesting that the evolution of nematode-specific 

GPAs occurred before the origin and divergence of Nematoda [8]. Using a greatly 
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expanded dataset than was previously available, we confirmed the lineage expansion of 

nematode-specific GPAs. Notably, nematode-specific GPA expansion appears to be 

predominantly restricted to class Chromadorea with the exception of a single nematode-

specific GPA (GPA-7) evident in nematodes of class Enoplea, such as the swine parasite 

Trichinella spiralis (Table 4). This contrasting complexity between nematode classes is 

of particular interest because nematode-specific GPAs are thought to play an integral role 

in sensory behavior and the absence of these proteins in Enoplea leads to the question of 

what underlying mechanisms dictate sensory behavior in Enoplean nematodes. GPA-7, 

the one nematode-specific gene identified in Enopleans, is unique among the nematode-

specific genes in that it is widely expressed in neuron and muscle cells instead of being 

restricted to sensory neurons in C. elegans [13]. Data presented here provide strong 

evidence that the majority of the nematode-specific GPA lineage expansion occurred 

following divergence of class Enoplea and Chromadorea, with the caveat that the 

database searched at this point was limited to seven Enoplean species (Table 4).  

 The data presented here also indicate that there are far fewer nematode-specific 

GPAs in parasitic nematodes when compared to free-living nematodes such as C. elegans 

(Table 4). This is especially evident in the clade III nematodes, which is composed 

exclusively of parasitic nematodes of animals (Table 4). Clade III nematodes spend their 

entire motile live within a host and thus only need to respond to a very specific set of host 

cues. In contrast, clade V nematodes such as C. elegans all have a free-living stage so 

must be able to distinguish between countless chemical cues present in the environment. 

The majority of nematode-specific GPAs are thought to function in sensory perception 

and have demonstrable functions in chemosensory behavior in C. elegans [13]. 
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Chemosensation is the response to environmental compounds and is important in a 

variety of nematode behaviors such as finding food, mates and avoiding noxious 

conditions [34-36]. These behaviors are dictated by the nematode’s life style so it would 

be reasonable to speculate that the underlying mechanisms that control these behaviors 

would also vary depending on the life strategy of the nematode.  

To avoid any selection bias and identify highly divergent heterotrimeric G-

proteins, we employed hidden Markov models (HMMER-3.1b2), an approach that builds 

probabilistic models called profile HMMs that can be used to identify homologous 

sequences throughout the phylum. Unlike BLAST, which provides one best-scoring 

alignment, the hidden Markov Model algorithm takes into account a sum of probabilities 

across the entire alignment which allows for the identification of more divergent 

homologs than would be found using BLAST. In addition to the more powerful HMM 

algorithm, we also built our profile HMMs using putative heterotrimeric G-protein 

homologs from the entire phylum in order minimize any bias that could arise as a result 

of using C. elegans heterotrimeric G-proteins as seed sequences.  

G-protein β subunits 

C. elegans have two G-protein β subunits, both of which show remarkable 

conservation with other GPBs even at great evolutionary distances (for example, percent 

shared identity with human homologs; GPB-1: 86% and GPB-2: 64%) [17, 18]. 

Nematode GPBs are incredibly conserved, with a high degree of similarity at the amino 

acid level, across the entire phylum (Table 5). Phylogenetic analysis further confirmed a 

high degree of GPB conservation within phylum Nematoda (Figure 1). GPB-1 is 
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important for olfactory adaption in C. elegans [21], however it remains to be seen if 

GPB-1 has a functional role in chemosensory behavior of parasitic nematodes. The high 

level of GPB-1 amino acid similarity (greater than 90% shared identity across Nematoda) 

found here may translate to like function and phenotype in all nematodes, but thorough 

pharmacological, genetic and/or reverse genetics studies would be necessary to fully 

elucidate the function of this β subunit in other members of the phylum.  

GPB-2 is orthologous to a divergent vertebrate β subunit, GPB-5, which interacts 

with regulators of G-protein signaling (RGS) proteins in mammals [37]. RGS proteins 

negatively regulate G-protein signaling by accelerating the GTPase activity of α subunit 

thereby promoting inactivation of the GPA [37, 38]. In C. elegans, GPB-2 also appears to 

interact with RGS proteins, which is in contrast to GPB-1, which directly interacts with α 

subunits [37]. This demonstrates the remarkable functional conservation of these 

proteins. Like GPB-1, GPB-2 appears to be ubiquitous within phylum Nematoda (Table 

5). Furthermore, GPB-2 amino acid similarity is very high (greater than 70% shared 

identity) within the phylum indicating that functional similarity may exist with this 

protein throughout Nematoda.  

G-protein γ-subunits 

Only two G-protein γ subunits (GPC-1 and GPC-2) have been identified in C. 

elegans, neither of which have any clear human homologs [13, 20]. The expression 

patterns of gpc-1 and gpc-2 are highly dissimilar [20]. Gpc-1 is restricted to the sensory 

neurons in C. elegans, pointing to a specific role in sensory perception in this nematode 
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while gpc-2 is ubiquitously expressed [20]. Additionally, GPC-1 is important for sensory 

adaptation to water-soluble compounds such as sodium chloride [20].  

Bioinformatic analysis has shown that gpc-1 and gpc-2 can be found throughout 

phylum Nematoda (Table 6). Interestingly, we also identified a novel γ subunit (GPC-3) 

that was present throughout Nematoda but noticeably absent in Caenorhabditis species 

(Table 6). Like GPC-1 and GPC-2, GPC-3 is a short protein (~75 amino acids) with a 

gene structure that includes only 2 exons separated by a single intron demonstrating 

structural conservation of the genes that encode these proteins. Phylogenetic analysis 

confirmed that GPC-3 is unique but closely related to GPC-1 and GPC-2 (Figure 2). 

Using relative semi-quantitative RT PCR, we found that all three gpc genes are expressed 

throughout multiple life stages in B. malayi (Figure 3). Relative expression of gpc-1 and 

gpc-2 was comparable while relative expression of gpc-3 was higher when compared to 

the 18S internal standard (Figure 3).  

Of note, GPC-3 is absent in Caenorhabditis species (Table 6).  That GPC-3 was 

found in all other nematodes analyzed indicates that this gene was lost prior to or during 

the divergence of Caenorhabditis. The absence of GPC-3 in Caenorhabditis highlights 

the limitation of regarding one genome as representative of an entire phylum and 

underscores the need to sequence additional nematode species in order to have a more 

accurate representation of this diverse phylum.  

When we examined Ascaris suum transcriptomic datasets, we found gpc-3 

transcript expression was highest in the pharyngeal region of the parasite, so it is possible 

that gpc-3, like gpc-1, is expressed at least in part in amphid sensory neurons [39]. Why 
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other nematodes would need to employ an additional γ subunit in the sensory neurons 

needs further study. However, it may be that GPC-3 represents a more ancestral 

chemosensory complement and its loss in Caenorhabditis came about as a result of an 

expansion in nematode-specific sensory GPAs in these nematodes. Other nematodes 

possess fewer GPAs, and thus GPC-3 may still have a functional role. 

Conclusions  

 Heterotrimeric G-proteins are intimately involved in a number of essential 

functions in nematodes, including modulating the capacity to perceive and respond to 

sensory cues from the environment. Our bioinformatic and phylogenetic analysis that 

incorporated sequence data from more than 70 nematode species is the most 

comprehensive analysis of heterotrimeric G-proteins in nematodes to date. We have 

demonstrated that although GPAs, GPBs and GPCs are broadly conserved throughout 

Nematoda, there are some important differences. Notably, the nematode-specific GPA 

lineage expansion appears to primarily be a Chromadorean phenomenon. In addition, we 

found far fewer GPAs in parasitic nematodes and identified a novel GPC that is 

noticeably absent in Caenorhabditis. Characterization of these proteins not only provides 

insight into essential nematode behavior but may also provide novel targets that can be 

manipulated for use in control of parasitic nematodes of both plants and animals. 
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Table 1. Nematode genomes used in this study 
 

Species  Genome provider BioProject ID Assembly version Reference 
Romanomermis culicivorax University of Cologne PRJEB1358 nRc.2.0 [40] 
Soboliphyme baturini1 Wellcome Trust Sanger Institute PRJEB516 S_baturini_Dall_Island_v1_0_4 

 Trichinella nativa1 Genome Institute of Washington University PRJNA179527 T_nativa_rf_gd 
 Trichinella spiralis Genome Institute of Washington University PRJNA12603 Trichinella_spiralis-3.7.1 [41] 

Trichuris muris Wellcome Trust Sanger Institute PRJEB126 TMUE2.2 [42] 
Trichuris suis1 Genome Institute of Washington University PRJNA179528 T_suis_1.0.allpaths 

 Trichuris suis University of Melbourne PRJNA208415 Tsuis_adult_male_1.0 [43] 
Trichuris suis University of Melbourne PRJNA208416 Tsuis_adult_female_1.0 [43] 
Trichuris trichiura Wellcome Trust Sanger Institute PRJEB535 TTRE2.1 [42] 
Acanthocheilonema viteae University of Edinburgh PRJEB4306 nAv1.0 

 Anisakis simplex1 Wellcome Trust Sanger Institute PRJEB496 A_simplex_v1_5_4 
 Ascaris lumbricoides1 Wellcome Trust Sanger Institute PRJEB4950 A_lumbricoides_Ecuador_v1_5_4 
 Ascaris suum University of Colorado PRJNA62057 ASU_2.0 [44] 

Ascaris suum University of Melbourne PRJNA808881 AscSuum_1.0_submitted [45] 
Brugia malayi University of Pittsburgh PRJNA10729 B_malayi-3.1 [46] 
Brugia pahangi1 Wellcome Trust Sanger Institute PRJEB497 B_pahangi_Glasgow_v1_5_4 

 Brugia timori1 Wellcome Trust Sanger Institute PRJEB4663 B_timori_Indonesia_v1_0_4 
 Dirofilaria immitis University of Edinburgh PRJEB1797 nDi.2.2 [47] 

Dracunculus medinensis1 Wellcome Trust Sanger Institute PRJEB500 D_medinensis_Ghana_v2_0_4 
 Elaeophora elaphi1 Wellcome Trust Sanger Institute PRJEB502 E_elaphi_v1_0_4 
 Enterobius vermicularis1 Wellcome Trust Sanger Institute PRJEB503 E_vermicularis_Canary_Islands_v1_0_4 
 Gongylonema pulchrum1 Wellcome Trust Sanger Institute PRJEB505 G_pulchrum_Hokkaido_v1_0_4 
 Litomosoides sigmodontis University of Edinburgh PRJEB3075 nLs.2.1 
 Loa loa University of Maryland PRJNA246086 Lloa-hgap-1 [48] 

Loa loa Broad Institute PRJNA60051 Loa_loa_V3 [49] 
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Table 1. Nematode genomes used in this study (continued)  
     
Species  Genome provider BioProject ID Assembly version Reference 
Onchocerca flexuosa1 Wellcome Trust Sanger Institute PRJEB512 O_flexuosa_Cordoba_v1_0_4 

 Onchocerca ochengi1 Wellcome Trust Sanger Institute PRJEB1204 O_ochengi_Ngaoundere_v1_0_4 
 Onchocerca ochengi University of Edinburgh PRJEB1809 nOo.2.0 
 Onchocerca volvulus1 Wellcome Trust Sanger Institute PRJEB513 O_volvulus_Cameroon_v3 
 Parascaris equorum1 Wellcome Trust Sanger Institute PRJEB514 P_equorum_v1_0_4 
 Syphacia muris1 Wellcome Trust Sanger Institute PRJEB524 S_muris_Valencia_v1_0_4 
 Thelazia callipaeda1 Wellcome Trust Sanger Institute PRJEB1205 T_callipaeda_Ticino_v1_0_4 
 Toxocara canis1 Wellcome Trust Sanger Institute PRJEB533 T_canis_Equador_v1_5_4 
 Wuchereria bancrofti1 Wellcome Trust Sanger Institute PRJEB536 W_bancrofti_Jakarta_v2_0_4 
 Bursaphelenchus xylophilus Wellcome Trust Sanger Institute PRJEA64437 ASM23113v1_submitted [50] 

Panagrellus redivivus California Institute of Technology PRJNA186477 Pred3 [51] 
Parastrongyloides trichosuri Wellcome Trust Sanger Institute PRJEB515 P_trichosuri_KNP_v2_0_4 [52] 
Rhabditophanes sp KR3021 Wellcome Trust Sanger Institute PRJEB1297 Rhabditophanes_sp_KR3021_v2_0_4 [52] 
Steinernema carpocapsae California Institute of Technology PRJNA202318 S_carpo_v1_submitted [53] 
Steinernema feltiae California Institute of Technology PRJNA204661 S_felt_v1_submitted [53] 
Steinernema glaseri California Institute of Technology PRJNA204943 S_glas_v1_submitted [53] 
Steinernema monticolum California Institute of Technology PRJNA205067 S_monti_v1_submitted [53] 
Steinernema scapterisci California Institute of Technology PRJNA204942 S_scapt_v1_submitted [53] 
Strongyloides papillosus Wellcome Trust Sanger Institute PRJEB525 S_papillosus_LIN_v2_1_4 [52] 
Strongyloides ratti Wellcome Trust Sanger Institute PRJEB125 S_ratti_ED321_v5_0_4 [52] 
Strongyloides stercoralis Wellcome Trust Sanger Institute PRJEB528 S_stercoralis_PV0001_v2_0_4 [52] 
Strongyloides venezuelensis Wellcome Trust Sanger Institute PRJEB530 S_venezuelensis_HH1_v2_0_4 [52] 
Globodera pallida Wellcome Trust Sanger Institute PRJEB123 GPAL001 [54] 
Meloidogyne floridensis University of Edinburgh PRJEB6016 nMf.1.0 [55] 
Meloidogyne hapla North Carolina State University PRJNA29083 Freeze_1 [56] 
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Table 1. Nematode genomes used in this study (continued)  
     
Species  Genome provider BioProject ID Assembly version Reference 
Meloidogyne incognita  INRA PRJEA28837 ASM18041v1a [57] 
Ancylostoma caninum1 Genome Institute of Washington University PRJNA72585 A_caninum_9.3.2.ec.cg.pg 

 Ancylostoma ceylanicum Cornell University PRJNA231479 Acey_2013.11.30.genDNA [58] 
Ancylostoma ceylanicum1 Genome Institute of Washington University PRJNA72583 A_ceylanicum1.3.ec.cg.pg 

 Ancylostoma duodenale1 Genome Institute of Washington University PRJNA72581 A_duodenale_2.2.ec.cg.pg 
 Angiostrongylus cantonensis1 Wellcome Trust Sanger Institute PRJEB493 A_cantonensis_Taipei_v1_5_4 
 Angiostrongylus costaricensis1 Wellcome Trust Sanger Institute PRJEB494 A_costaricensis_Costa_Rica_v1_5_4 
 Caenorhabditis angaria California Institute of Technology PRJNA51225 13mar2012 [59] 

Caenorhabditis brenneri Genome Institute of Washington University PRJNA20035 C_brenneri-6.0.1b   
Caenorhabditis briggsae Genome Institute of Washington University PRJNA10731 CB4 [60] 
Caenorhabditis elegans Wellcome Trust Sanger Institute PRJNA13758 WBcel235 [14] 
Caenorhabditis japonica Genome Institute of Washington University PRJNA12591 C_japonica-7.0.1   
Caenorhabditis remani Genome Institute of Washington University PRJNA53967 C_remani-15.0.1   
Caenorhabditis sinica University of Edinburgh PRJNA194557 1.0 [61] 
Caenorhabditis tropicalis Genome Institute of Washington University PRJNA53597 Caenorhabditis_sp11_JU1373-3.0.1   
Cylicostephanus goldi1 Wellcome Trust Sanger Institute PRJEB498 C_goldi_Cheshire_v1_0_4 

 Dictyocaulus viviparus University of Edinburgh PRJEB5116 nDv.1.0 [62] 
Dictyocaulus viviparus Genome Institute of Washington University PRJNA72587 D_viviparus_9.2.1.ec.pg [63] 
Haemonchus contortus Wellcome Trust Sanger Institute PRJEB506 Haemonchus_contortus_MHco3-2.0 [64] 
Haemonchus contortus University of Melbourne PRJNA205202 Hco_v4_coding_submitted [65] 
Haemonchus placei1 Wellcome Trust Sanger Institute PRJEB509 H_placei_MHpl1_v1_5_4 

 Heligmosomoides bakeri1 Wellcome Trust Sanger Institute PRJEB1203 H_bakeri_Edinburgh_v1_5_4 
 Heterorhabditis bacteriophora The Ohio State University PRJNA13977 Heterorhabditis_bacteriophora-7.0 [66] 

Necator americanus Genome Institute of Washington University PRJNA72135 N_americanus_v1 [67] 
Nippostrongylus brasiliensis1 Wellcome Trust Sanger Institute PRJEB511 N_brasiliensis_RM07_v1_5_4 

 

97	   



www.manaraa.com

	  

Table 1. Nematode genomes used in this study (continued)  
     
Species  Genome provider BioProject ID Assembly version Reference 
Oesophagostomum 
dentatum1 Genome Institute of Washington University PRJNA72579 O_dentatum_10.0.ec.cg.pg 

 Pristionchus exspectatus Max-Planck Institute for Developmental Biology PRJEB6009 P_exspectatus_v1 [68] 
Pristionchus pacificus Max-Planck Institute for Developmental Biology PRJNA12644 P_pacificus-v2 [68] 
Strongylus vulgaris1 Wellcome Trust Sanger Institute PRJEB531 S_vulgaris_Kentucky_v1_0_4 

 Teladorsagia circumcincta1 Genome Institute of Washington University PRJNA72569 T_circumcincta.14.0.ec.cg.pg 
 

1 Genome sequenced as part of the Helminth Genomes Consortium (unpublished) 
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Table 2. Putative heterotrimeric G-proteins identified in Nematoda 

 
 
To focus our search on heterotrimeric G-proteins we downloaded all known 
heterotrimeric G-proteins in C. elegans (Seed). Local blastp searches were performed 
using the predicted proteins from each nematode species as subjects and C. elegans 
heterotrimeric G-protein sequences as queries. The top hits for each these searches were 
aligned using the MUSCLE multiple sequence alignment program and manually curated. 
The putative heterotrimeric G-proteins identified (BLAST) were used to build profile 
HMMs that were then used as query sequences to identify putative homologs using 
HMMsearch. This data set was aligned and manually curated to identify putative 
heterotrimeric G-proteins in Nematoda (HMMs). GPA = G-protein α subunit, GPB = G-
protein β subunit, GPC = G-protein γ subunit. 
 
 
Table 3. Oligonucleotides used to amplify GPC genes from B. malayi	  

Target Oligonucleotide sequence (5' to 3') Amplicon size (Bp) 

GPC1 Forward: GATCAGGTTCGAGRACAGACC 178 
Reverse: CAGCACAAGATTTCTTTTCCTG 

GPC2 Forward: GACAAGTGCGACATGCAGCGG 158 
Reverse: GGATTGCATCGTTTATCAACGGGAT 

GPC3 Forward: GCAAGAGATACTCATTCCATTCAA 208 
Reverse: GCAAACACTGGAAGGAACTT 

Seed BLAST HMMs
GPA 22 473 1038
GPB 2 163 144
GPC 2 149 151
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Table 4. Heterotrimeric G-protein α subunits in Nematoda  

C
lass 

C
lade 

Species 

G
PA

-1 
G

PA
-2 

G
PA

-3 
G

PA
-4 

G
PA

-5 
G

PA
-6 

G
PA

-7 
G

PA
-8 

G
PA

-9 
G

PA
-10 

G
PA

-11 
G

PA
-12 

G
PA

-13 
G

PA
-14 

G
PA

-15 
G

PA
-16 

G
PA

-17 
G

PA
-18 

O
D

R
-3 

G
O

A
-1 

G
SA

-1 
EG

L-30 

Enoplea 
I 

Romanomermis 
culicivorax                                             
Soboliphyme baturini                                             
Trichinella nativa                                             
Trichinella spiralis                                             
Trichuris muris                                             
Trichuris suis                                             
Trichuris trichiura                                             

C
hrom

adorea 
III 

Acanthocheilonema 
viteae                                             
Anisakis simplex                                             
Ascaris lumbricoides                                             
Ascaris suum                                             
Brugia malayi                                             
Brugia pahangi                                             
Brugia timori                                             
Dirofilaria immitis                                             
Dracunculus medinensis                                             
Elaeophora elaphi                                             
Enterobius vermicularis                                             
Gongylonema pulchrum                                             
Litomosoides 
sigmodontis                                             
Loa loa                                             
Onchocerca flexuosa                                             
Onchocerca ochengi                                             
Onchocerca volvulus                                             
Parascaris equorum                                             
Syphacia muris                                             
Thelazia callipaeda                                             
Toxocara canis                                             
Wuchereria bancrofti                                             

IV
 

Bursaphelenchus 
xylophilus                                             
Panagrellus redivivus                                             
Parastrongyloides 
trichosuri                                             
Rhabditophanes sp 
KR3021                                             
Steinernema 
carpocapsae                                             
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Table 4. Heterotrimeric G-protein α subunits in Nematoda (continued) 
 

C
lass 

C
lade 

Species 

G
PA

-1 
G

PA
-2 
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PA

-3 
G
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-4 
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PA

-5 
G
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-6 

G
PA

-7 
G

PA
-8 
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-9 
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-10 
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-12 
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-13 
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-14 

G
PA

-15 
G

PA
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G
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-17 
G

PA
-18 

O
D

R
-3 

G
O

A
-1 

G
SA

-1 
EG

L-30 

C
hrom

adorea 
IV

 

Steinernema feltiae                                             
Steinernema glaseri                                             
Steinernema monticolum                                             
Steinernema scapterisci                                             
Strongyloides papillosus                                             
Strongyloides ratti                                             
Strongyloides stercoralis                                             
Strongyloides 
venezuelensis                                             
Globodera pallida                                             
Meloidogyne floridensis                                             
Meloidogyne hapla                                             
Meloidogyne incognita                                             

V
 Ancylostoma caninum                                             

  Ancylostoma ceylanicum                                             

  Ancylostoma duodenale                                             

  Angiostrongylus 
cantonensis                                             

  Angiostrongylus 
costaricensis                                             

  Caenorhabditis angaria                                             

  Caenorhabditis brenneri                                             

  Caenorhabditis briggsae                                             

  Caenorhabditis elegans                                             
  Caenorhabditis japonica                                             

  Caenorhabditis remani                                             
  Caenorhabditis sinica                                             

  Caenorhabditis 
tropicalis                                             

  Cylicostephanus goldi                                             

  Dictyocaulus viviparus                                             

  Haemonchus contortus                                             

  Haemonchus placei                                             

  Heligmosomoides bakeri                                             

  Heterorhabditis 
bacteriophora                                             

  Necator americanus                                             

  Nippostrongylus 
brasiliensis                                             

  Oesophagostomum 
dentatum                                             
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Table 4. Heterotrimeric G-protein α subunits in Nematoda (continued) 
 

C
lass 

C
lade 

Species 

G
PA

-1 
G

PA
-2 

G
PA

-3 
G

PA
-4 
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PA

-5 
G

PA
-6 
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PA

-7 
G
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-8 
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-9 
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-11 
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-13 
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G
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-16 

G
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-17 
G

PA
-18 

O
D

R
-3 

G
O

A
-1 

G
SA

-1 
EG

L-30 

C
hrom

adorea 
V

 

Pristionchus exspectatus                                             
Pristionchus pacificus                                             
Strongylus vulgaris                                             
Teladorsagia 
circumcincta                                             

Putative heterotrimeric G-protein α subunits in phylum Nematoda. Black boxes indicate 
the presence of a GPA homolog, as identified via blastp and HMMER, in genomes 
analyzed in this study. GPAs from C. elegans (highlighted in yellow) were used to seed 
homology searches.  
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Table 5. Heterotrimeric G-protein β subunits in Nematoda 
 

C
lass 

C
lade Species 

G
PB

-1 

G
PB

-2 

G
PB

-2 

Enoplea 

I 

Romanomermis culicivorax      
Soboliphyme baturini      
Trichinella nativa      
Trichinella spiralis      
Trichuris muris      
Trichuris suis      
Trichuris trichiura      

C
hrom

adorea 

III 

Acanthocheilonema viteae      
Anisakis simplex      
Ascaris lumbricoides      
Ascaris suum      
Brugia malayi      
Brugia pahangi      
Brugia timori      
Dirofilaria immitis      
Dracunculus medinensis      
Elaeophora elaphi      
Enterobius vermicularis      
Gongylonema pulchrum      
Litomosoides sigmodontis      
Loa loa      
Onchocerca flexuosa      
Onchocerca ochengi      
Onchocerca volvulus      
Parascaris equorum      
Syphacia muris      
Thelazia callipaeda      
Wuchereria bancrofti      

IV
 

Bursaphelenchus xylophilus      
Panagrellus redivivus      
Parastrongyloides trichosuri      
Rhabditophanes sp KR3021      
Steinernema carpocapsae      
Steinernema feltiae      
Steinernema glaseri      
Steinernema monticolum      
Steinernema scapterisci      
Strongyloides papillosus      
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Putative heterotrimeric G-protein β subunits in phylum Nematoda. Black boxes indicate 
the presence of a GPB homolog, as identified via blastp and HMMER, in genomes 
analyzed in this study. GPBs from C. elegans (highlighted in yellow) were used to seed 
homology searches.  

Table 5. Heterotrimeric G-protein β subunits in Nematoda (continued) 
 

C
lass 

C
lade Species 

G
PB

-1 

G
PB

-2 

G
PB

-2 

C
hrom

adorea 

IV
 

Strongyloides ratti      
Strongyloides stercoralis      
Strongyloides venezuelensis      
Globodera pallida      
Meloidogyne floridensis      
Meloidogyne hapla      
Meloidogyne incognita      

V
 

Ancylostoma caninum      
Ancylostoma ceylanicum      
Ancylostoma duodenale      
Angiostrongylus cantonensis      
Angiostrongylus costaricensis      
Caenorhabditis angaria      
Caenorhabditis brenneri      
Caenorhabditis briggsae      
Caenorhabditis elegans      
Caenorhabditis japonica      
Caenorhabditis remani      
Caenorhabditis sinica      
Caenorhabditis tropicalis      
Cylicostephanus goldi      
Dictyocaulus viviparus      
Haemonchus contortus      
Haemonchus placei      
Heligmosomoides bakeri      
Heterorhabditis bacteriophora      
Necator americanus      
Nippostrongylus brasiliensis      
Oesophagostomum dentatum      
Pristionchus exspectatus      
Pristionchus pacificus      
Strongylus vulgaris      
Teladorsagia circumcincta      
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Figure 1. Phylogeny reveals that heterotrimeric G-protein β subunits (GPB) are 
highly conserved in phylum Nematoda. Maximum likelihood phylogeny of 
heterotrimeric GPBs in phylum Nematoda. Phylogenetic tree was constructed using 
RAxML and visualized with FigTree [32, 34]. Phylogenetic tree shown is the best-
scoring maximum likelihood tree based on 100 bootstrap replicates. 
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Table 6. Heterotrimeric G-protein γ subunits in Nematoda 
 

C
lass 

C
lade Species 

G
PC

-1 

G
PC

-2 

G
PC

-3 

  

Enoplea 

I 

Romanomermis culicivorax       EPN 
Soboliphyme baturini       APN 
Trichinella nativa       APN 
Trichinella spiralis       APN 
Trichuris muris       APN 
Trichuris suis       APN 
Trichuris trichiura       APN 

C
hrom

adorea 

III 

Acanthocheilonema viteae       APN 
Anisakis simplex       APN 
Ascaris lumbricoides       APN 
Ascaris suum       APN 
Brugia malayi       APN 
Brugia pahangi       APN 
Brugia timori       APN 
Dirofilaria immitis       APN 
Dracunculus medinensis       APN 
Elaeophora elaphi       APN 
Enterobius vermicularis       APN 
Gongylonema pulchrum       APN 
Litomosoides sigmodontis       APN 
Loa loa       APN 
Onchocerca flexuosa       APN 
Onchocerca ochengi       APN 
Onchocerca volvulus       APN 
Parascaris equorum       APN 
Syphacia muris       APN 
Thelazia callipaeda       APN 
Toxocara canis       APN 
Wuchereria bancrofti       APN 

IV
 

Bursaphelenchus xylophilus       PPN 
Panagrellus redivivus       FL 
Parastrongyloides trichosuri       APN 
Rhabditophanes sp KR3021       FL 
Steinernema carpocapsae       EPN 
Steinernema feltiae       EPN 
Steinernema glaseri       EPN 
Steinernema monticolum       EPN 
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Table 6. Heterotrimeric G-protein γ subunits in Nematoda (continued) 
 

C
lass 

C
lade Species 

G
PC

-1 

G
PC

-2 

G
PC

-3 

  

C
hrom

adorea  

IV
 

Steinernema scapterisci       EPN 
Strongyloides papillosus       APN 
Strongyloides ratti       APN 
Strongyloides stercoralis       APN 
Strongyloides venezuelensis       APN 
Globodera pallida       PPN 
Meloidogyne floridensis       PPN 
Meloidogyne hapla       PPN 
Meloidogyne incognita       PPN 

V
 

Ancylostoma caninum       APN 
Ancylostoma ceylanicum       APN 
Ancylostoma duodenale       APN 
Angiostrongylus cantonensis       APN 
Angiostrongylus costaricensis       APN 
Caenorhabditis angaria       FL 
Caenorhabditis briggsae       FL 
Caenorhabditis elegans       FL 
Caenorhabditis japonica       FL 
Caenorhabditis remani       FL 
Cylicostephanus goldi       APN 
Dictyocaulus viviparus       APN 
Haemonchus contortus       APN 
Haemonchus placei       APN 
Heligmosomoides bakeri       APN 
Heterorhabditis bacteriophora       EPN 
Necator americanus       APN 
Nippostrongylus brasiliensis       APN 
Oesophagostomum dentatum       APN 
Pristionchus exspectatus       FL 
Pristionchus pacificus       FL 
Strongylus vulgaris       APN 
Teladorsagia circumcincta       APN 

	  Putative heterotrimeric G-protein γ subunits in phylum Nematoda. Black boxes indicate 
the presence of a GPC homolog, as identified via blastp and HMMER, in genomes 
analyzed in this study. GPCs from C. elegans (highlighted in yellow) were used to seed 
homology searches.  	  
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Figure 2. Phylogenetic analysis of G-protein γ subunits (GPCs) reveals novel γ 
subunit (GPC-3) in phylum Nematoda. Maximum-likelihood phylogeny of GPCs in 
phylum Nematoda. Phylogenetic tree was constructed using RAxML and visualized with 
FigTree [32, 34]. Phylogenetic tree shown is the best-scoring maximum likelihood tree 
based on 100 bootstrap replicates.  
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Figure 3. GPC genes are transcribed throughout the life of B. malayi. Micrograph 
shows ethidium bromide stained 2% agarose gel of relative semi-quantitative RT-PCR of 
adult female (AF), adult male (AM), L4, L3 and microfilariae (MF) stage B. malayi. Top: 
gpc-1, middle: gpc-2, bottom: gpc-3. QuantumRNA Universal 18S internal standards 
were used as an internal control.  
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Abstract  

Lymphatic Filariasis (LF) is a socio-economically devastating mosquito-borne 

Neglected Tropical Disease caused by parasitic filarial nematodes. The interaction 

between the parasite and host, both mosquito and human, during infection, development 

and persistence is dynamic and delicately balanced. Manipulation of this interface to the 
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detriment of the parasite is a promising potential avenue to develop disease therapies but 

is prevented by our very limited understanding of the host-parasite relationship. 

Exosomes are bioactive small vesicles (30–120 nm) secreted by a wide range of cell 

types and involved in a wide range of physiological processes. Here, we report the 

identification and partial characterization of exosome-like vesicles (ELVs) released from 

the infective L3 stage of the human filarial parasite Brugia malayi. Exosome-like vesicles 

were isolated from parasites in culture media and electron microscopy and nanoparticle 

tracking analysis were used to confirm that vesicles produced by juvenile B. malayi are 

exosome-like based on size and morphology. We show that loss of parasite viability 

correlates with a time-dependent decay in vesicle size specificity and rate of release. The 

protein cargo of these vesicles is shown to include common exosomal protein markers 

and putative effector proteins. These Brugia-derived vesicles contain small RNA species 

that include microRNAs with host homology, suggesting a potential role in host 

manipulation. Confocal microscopy shows J774A.1, a murine macrophage cell line, 

internalize purified ELVs, and we demonstrate that these ELVs effectively stimulate a 

classically activated macrophage phenotype in J774A.1. To our knowledge, this is the 

first report of exosome-like vesicle release by a human parasitic nematode and our data 

suggest a novel mechanism by which human parasitic nematodes may actively direct the 

host responses to infection. Further interrogation of the makeup and function of these 

bioactive vesicles could seed new therapeutic strategies and unearth stage-specific 

diagnostic biomarkers. 
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Introduction  

The parasitic filarial nematodes Wuchereria bancrofti, Brugia malayi and B. 

timori are etiological agents of Lymphatic Filariasis (LF), a chronic and debilitating 

disease infecting over 120 million people in 73 endemic countries [1]. Adult parasites 

reside in the lymphatic vasculature of infected individuals and release larvae called 

microfilariae, which are taken up by vector mosquitoes during the blood meal. Parasites 

rapidly develop within the mosquito, molting twice to the infective L3 stage [2, 3] before 

transmission to the definitive host during a subsequent blood meal. Following penetration 

of the vertebrate host via the puncture wound left by the mosquito, L3 stage parasites 

migrate to the lymphatics and undergo further growth and development, molting to the 

L4 stage and again to adulthood. The longevity of patent infection is remarkable; adults 

live for at least 8–10 years by general consensus. The ability of larval stages to 

successfully invade the host, and for adult worms to maintain infection for such an 

extended period of time, suggest filarial worms have developed strategies to both 

facilitate the establishment of infection and evade or manipulate the host immune 

response. Although the immunomodulatory capabilities of infecting larval and adult stage 

filarial worms have been well documented and reviewed [4-8], the parasite effector 

molecules responsible for manipulating host biology and their mechanisms of release 

have been difficult to define. Actively secreted proteins have historically been considered 

the principal candidates and several secreted proteins have been identified with 

demonstrable bioactivity at the host-parasite interface [9-12]. Adding to these, the 

characterization of parasitic nematode secretomes has revealed a complex array of 

potential proteinaceous effectors [13-16]. Other types of effector, including molecules 
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expressed on the parasite surface may have a role [17] and the emergence of small 

noncoding RNAs as cell-to-cell agents of genetic regulation [18-22] hint at exciting 

alternative mechanisms. 

Exosomes are a subtype of extracellular vesicle categorized by size (30–120 nm 

diameter) and defined by a particular biogenic pathway [23]; exosomes are formed by 

inward budding of vesicles in the late endosomal pathway to create multivesicular 

endosomes that fuse with the plasma membrane to effect release [24, 25]. Originally 

thought to be a means of cellular waste disposal, exosomes are now considered highly 

bioactive extracellular vesicles that facilitate cell-to-cell communication and are the focus 

of renewed investigation. The cargo of exosomes is complex and variable, containing 

bioactive proteins, functional mRNA, miRNA and other small non-coding RNA species 

[18, 26], likely reflecting both source and target environments. Fusion of the exosome to 

a target cell delivers this heterogeneous bioactive cargo and selectively alters the biology 

of the target tissue [19, 21, 26, 27]; the isolation of exosomes from circulatory systems 

and an array of biofluids suggests effector sites can be far from the point of release. 

Parasites are known to release exosome-like vesicles [27-30] and it is compelling to 

hypothesize that bioactive molecules secreted by parasitic nematodes, packaged in 

exosomes, function as cell-to-cell effectors in the host-parasite interaction. Indeed 

recently, extracellular vesicles secreted by the gastrointestinal nematode 

Heligmosomoides polygyrus, containing proteins and small RNA species, have been 

shown to alter gene expression in host cells and suppress innate immune responses in 

mice [26]. 
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Here we show that larval and adult stage B. malayi secrete prodigious quantities 

of extracellular vesicles in vitro whose size and morphology are consistent with 

exosomes. These exosome-like extracellular vesicles (ELVs) contain small RNA species, 

including specific miRNA and are enriched in miRNA that are identical to host miRNAs 

with known immunomodulatory roles [31-34]. The protein cargo of the vesicles is 

relatively scant but includes bioactive proteins, proteins with putative RNA binding 

properties and proteins commonly associated with exosomes [35]. The parasite ELVs are 

internalized by host macrophages and elicit a classically activated phenotype in these 

cells. The demonstration that filarial nematodes secrete exosomal RNA and proteins that 

potentially function at the host-parasite interface is significant. Defining this parasite 

effector toolkit exposes an array of new molecules that may be exploited in novel LF 

control strategies. 

Results and Discussion 

Infective-stage B. malayi release exosome-like vesicles 

In order to ascertain whether exosomes are released by B. malayi, extracellular 

vesicles were isolated from parasites incubated in culture media using a filtration and 

ultracentrifugation protocol. We focused our initial discovery efforts on larval and adult 

stage parasites. L3, adult male, and adult female B. malayi were incubated in vitro for 24 

hour periods under standard culture conditions, and purified vesicle preparations were 

evaluated with electron microscopy (EM). Infectious stage L3 parasites in culture release 

abundant 50–120 nm microvesicles consistent with the classical “deflated ball” 

morphology of mammalian and non-mammalian exosomes reported in the literature [36] 
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(Fig 1A & 1B). We refer to these as exosome-like vesicles (ELVs) throughout this 

manuscript, in recognition that they cannot be unequivocally designated as exosomes, 

rather than another class of extracellular vesicles, because their biogenesis has not been 

determined. Preparations from adult stage B. malayi were more heterogenous and dilute, 

not allowing for the definitive categorization of putative exosome-like vesicles (Fig 1C). 

This, despite the fact a much higher mass of total parasite tissue was used for adult 

preparations as compared to larval preparations. These data suggest ELV release to be a 

predominantly larval phenomenon in B. malayi, a working hypothesis supported by 

analysis of RNA associated with the vesicles. We therefore chose to focus our subsequent 

experiments on L3 stage parasites. A compelling overall hypothesis for the function of B. 

malayi ELVs is that they mediate the secretion and trafficking to host cells of effector 

molecules that facilitate parasitism and the observation that ELV secretion occurs 

primarily in those parasite stages that infect the host and establish parasitemia is 

consistent with this narrative. 

Time course profile of exosome-like vesicle release from infectious stage B. malayi  

To more accurately resolve the dynamics of ELV release in L3 B. malayi, we used 

a nanoparticle tracking analysis (NTA) system to measure vesicle output in a 72 hr in 

vitro time course. Media was collected from 300 worms after three successive 24 hr 

incubation periods, vesicles were purified by ultracentrifugation as before and individual 

vesicle preparations were analyzed via NanoSight LM10 as shown in Fig 2. Day 1 (0–24 

hr in culture) preparations reveal a prolific ELV release rate (> 9,000 ELVs/parasite/min) 

with a very narrow size distribution centered at ~90 nm. Day 2 (24–48 hr in culture) 

preparations show an essentially equivalent rate of release, but a stark broadening of the 
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size distribution. Day 3 (48–72 hr in culture) preparations are associated with 

significantly lower levels of release (<4,000 ELVs/parasite/min) and an even wider 

multimodal size distribution. These data suggest an overall time-dependent decay in 

vesicle rate of release and size specificity, which correlates to decreased L3 viability in 

vitro. The release of considerable quantities of precisely sized ELVs in viable worms 

(Days 1–2) is followed by the release of smaller quantities of a broader size range of 

particles that potentially include larger membrane vesicles and apoptotic blebs (Days 2–

3). This suggests an active and regulated mechanism of ELV release in healthy and viable 

L3 stage parasites, as opposed to a passive mode of noisy cellular deterioration. 

The protein cargo of Brugia exosome-like vesicles  

The protein content of B. malayi ELVs was determined using nanoscale liquid 

chromatography coupled to tandem mass spectrometry (nano LC/MS/MS). A total of 32 

proteins each containing at least two unique peptides were identified using MASCOT 

(Table 1). Specific proteins identified within the pellet included characteristic markers of 

exosomes including Hsp70, elongation factor-1α, elongation factor-2, actin, and Rab-1. 

In addition, over 80% of the proteins identified are orthologous to proteins identified in 

mammalian exosome proteomes, strongly suggesting that these vesicles are exosome-like 

in nature and supporting our ELV designation here. Interestingly, this set of vesicle-

specific proteins is entirely distinct from the proteins previously identified in pre- and 

post-molt L3 secretions [15].  

UniProt-GOA and quickGO were used to sort proteins into functional groups 

based on assigned gene ontology (GO) terms [37, 38], as shown in Fig 3. Based on GO 
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annotations, 20% of the proteins identified are involved in binding of bioactive molecules 

including nucleic acids and other proteins, 16% function in the transport of various ions 

and proteins and 14% are ribosomal proteins. In addition, a large fraction of proteins 

identified (21%) appear to be involved in various metabolic processes including 

hydrolase and transferase activities while the remaining 29% comprises proteins with 

translational, cytoskeletal and other functions.  

Included in the list of Brugia ELV proteins are potential effector molecules. Bm-

CPL-1 is a cathepsin L-like cysteine protease robustly expressed across the B. malayi life 

cycle [39]. Upregulation of Bm-cpl-1 expression coincides with transition between life 

cycle stages and an important role in the modulation of parasite molting has been 

confirmed [40-42]. This is the first demonstration that B. malayi secretes CPL-1 although 

other cathepsin-like cysteine proteases have been identified in the B. malayi secretome 

[14, 15] and a cathepsin L-like molecule is secreted by intra-mammalian stage 

Haemonchus contortus [43]. The exogenous function of exosomal Bm-CPL-1 is not clear 

but evidence points to some manipulation of the host-parasite interface. In a previous 

study, we suppressed Bm-cpl-1 expression using in vivo RNAi during the mosquito life 

stages [41]. Loss-of-function reduced prevalence of infection in mosquitoes by nearly 

40%, suggesting Bm-CPL-1 is important for establishing or maintaining parasitemia. In 

flatworms, an immunomodulatory role for secreted cathepsin L-like proteases is better 

established [44]; in Fasciola infection cathepsin L contributes to the permissive polarized 

Th2 > Th1 host response. 

The proteomic profiles of parasitic helminth exosomes are broad in range; for 

example, over 350 proteins were identified in the putative exosomes secreted by 
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Heligmosomoides polygyrus [26] whilst 45 and 79 proteins were identified in exosome-

like vesicles from Echinostoma caproni and Fasciola hepatica, respectively [28]. The B. 

malayi L3 stage profile identified here is relatively scant but consistent with this broad 

distribution. It may be that this is a stage-specific observation and ELV secreted by other 

B. malayi life stages display a more complex and abundant protein cargo tailored to 

distinct functional demands. Reflecting the small RNA component of these ELVs (see 

later sections), it may also be that larval stage Brugia ELVs are primarily vehicles for 

protected RNA secretion. Replication of the experiments conducted here might add depth 

to the MS data set and identify further ELV-associated proteins. 

B. malayi ELVs contain small RNA including miRNAs with potential host targets 

We probed larval and adult microvesicle preparations for the presence of small 

RNA species. Exosomes have been found to contain both non-coding RNAs (ncRNAs) 

and messenger RNAs (mRNAs) in a diverse range of species and cell types. Of particular 

interest to us was the potential presence of small non-coding RNAs, including 

microRNAs (miRNAs) that could potentially mediate parasite-parasite communication or 

modulate host gene expression. Small RNA species were preferentially isolated from 

putative ELV-containing pellets and examined with an Agilent Bioanalyzer. The 

microvesicle fractions of L3 B. malayi (24 hr incubations of 300 worms) revealed an 

abundance of small RNA species in the 25–200 nt range (Fig 4). Much less RNA was 

detected from incubations of adult male and female B. malayi (24 hr incubations of 30 

adult worms), despite the much higher mass of tissue in adult stage culture media. This 

lack of correlation between total parasite tissue material and RNA yield, coupled to the 

differential quality of larval and adult microvesicle preparations as evaluated by EM, 
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further indicates that ELV release is primarily a characteristic of larval-stage parasites 

and perhaps more biologically relevant to early parasite infection. 

To more fully investigate the nucleic acid contents of these newly discovered 

vesicles, we carried out RNA-Seq with both L3 ELV and tissue-derived small RNAs. 

Reads generated by Illumina sequencing were processed and used to seed an miRNA 

discovery and abundance estimation pipeline using miRDeep2 [45]. To compare ELV 

and cellular RNA abundance, miRNA expression was normalized to the total miRNA 

read count within each sample. miRNA discovery and profiling was augmented with data 

from previously discovered miRNAs in closely related nematode species to help 

overcome gaps in the B. malayi draft genome assembly (see Methods). Fig 5A compares 

normalized miRNA expression between ELV and tissue for the 20 most abundant 

miRNAs in each sample. Although there is considerable conservation in relative miRNAs 

abundances, there are some notable observations and exceptions. 

Bma-let-7 is significantly enriched in L3 ELVs as compared to L3 tissue, where it 

does not appear among the 20 most abundant miRNAs. Bma-let-7, along with four other 

B. malayi mature miRNAs found in ELVs (bma-miR-1, bma-miR-9, bma-miR-92, and 

bma-miR-100b), share perfect sequence identity with host (Homo sapiens) mature 

miRNAs, as shown in Fig 5B. Additionally, bma-miR-34 shares near perfect sequence 

identity with its H. sapiens homolog. 11 B. malayi miRNAs also share common seed sites 

with H. sapiens miRNAs (Fig 5C). Brugia ELV miRNA sequences were more broadly 

clustered by putative seed site and aligned to miRNAs from the soil-transmitted parasitic 

nematode Ascaris suum, the free living model nematode Caenorhabditis elegans, and 

mammalian host species H. sapiens and Mus musculus (Fig 6). In all cases, Brugia ELV 
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miRNAs that share common seed sites with host miRNAs have one-to-one A. suum 

orthologs. In some cases, parasite miRNAs are better conserved in mammalian hosts than 

in C. elegans (e.g., bma-miR-9, bma-miR-993, and bma-miR-100b/c). 

We examined the complement of the most abundant Brugia ELV-associated 

miRNAs with respect to very recent investigations of miRNAs released by other parasitic 

nematode species and found circulating in host biofluids [26, 46-48]. Common markers 

include let-7, lin-4, miR-34, miR-71, miR-92, and miR-100c (Fig 7A and 7B). While all 

members of this subset share seed site sequence identity with mammalian host miRNAs, 

lin-4, miR-34, miR-71, and miR-100c are sufficiently diverged from host miRNAs over 

their full length mature miRNA sequence and can potentially serve as biomarkers of 

filarial infection. Additionally, we compared the complements of the 20 most abundant 

Brugia ELV and H. polygyrus exosomal [26] miRNAs, identifying six miRNAs shared 

between these vesicles and a large number of miRNAs unique to each species (Fig 7C).  

Enrichment of bma-let-7 and the high fractional presence of other parasite 

miRNAs sharing perfect or high homology to host miRNAs, leads us to speculate about a 

potential ELV mediated mechanism by which parasite RNAs can be used to efficiently 

direct aspects of gene expression in host cells. Targets of endogenous let-7 family 

miRNAs in vertebrates include oncogenes, as well as genes involved in proliferation, 

apoptosis, and innate immunity [49-51]. Let-7 is intricately involved in macrophage 

polarization and responses to pathogen challenge [31, 33, 52], and the altering of host let-

7 expression therefore represents a potentially advantageous point of intervention for an 

invading parasite. Live pathogens down-regulate the expression of let-7 family miRNAs, 

and let-7 miRNAs act on toll-like receptors (e.g. TLR4) that directly mediate macrophage 
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responses [52-54]. Clearly, there is an important association between macrophage 

response to pathogens and let-7 expression. Our observation that B. malayi secrete let-7 

and other potential modulators of host gene expression identifies a mechanism by which 

this host immune response might be manipulated. Supporting this hypothesis, let-7 and 

other miRNAs with host conservation have been identified in immunomodulatory H. 

polygyrus adult stage exosomes [26]. To fully dissect this hypothesis, a broad 

investigation of the interaction of ELV miRNAs and host immune cells in vivo is needed. 

Brugia ELVs are internalized by host macrophages 

Macrophages are critical mediators of the early immune response to invasive 

Brugia parasites [8]. To test the hypothesis that secreted Brugia ELVs interact with host 

macrophages, we used fluorescent lipophilic dyes to visualize the interaction between 

J774A.1 murine macrophages and ELVs. This cell line was chosen because it is 

commercially available, can be cultured readily and because it recapitulates the biology 

of primary macrophages and dendritic cells [55]. ELVs were labeled with PKH67, a 

green fluorescent dye, and incubated with J774A.1 labeled with PKH26, a red fluorescent 

dye. Confocal microscopy revealed efficient internalization of the ELVs by this 

macrophage cell line (Fig 8). Internalization was observed diffusely throughout the cell 

cytoplasm with focus around membrane-rich puncta associated with the surface of the 

macrophages (Fig 8B). This pattern of internalization is consistent with other studies 

describing a phagocytic route of vesicle internalization [56, 57]. Macrophages were 

counterstained with DAPI to determine the efficiency of cell labeling and ELV uptake. 

PKH26-labeling of J774A.1 was very efficient and all cells were visualized although 

intensity of labeling was variable (Fig 8D). Approximately 40–50% of macrophages 
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internalized labeled ELVs to some degree (Fig 8E) with approximately 10% of 

macrophages internalizing ELVs at markedly higher levels (Fig 8E). There was no 

correlation between strong PKH 26-labelling of macrophages and vesicle uptake 

indicating internalization is not a factor of receptiveness to labeling. 

Brugia ELVs elicit a classically activated phenotype in host macrophages 

Macrophage activation is dichotomous; classically activated macrophages 

(CAMΦ) are elicited by LPS or IFN-γ and have a generally pro-inflammatory phenotype 

whereas alternatively activated macrophages (AAMΦ), driven by IL-4 and IL-13, appear 

immunosuppressive or anti-inflammatory. Helminth infection is typically associated with 

the AAMΦ pathway although both CAMΦ and AAMΦ are involved in the immune 

response to, and immunopathology caused by, Brugia infection. Experiments 

demonstrate different Brugia preparations can generate both CAMΦ and AAMΦ 

activation phenotypes; dead and moribund worms and worm lysates produce CAMΦ [58] 

but live worms and complete excretory/secretory (ES) preparations drive AAMΦ [59-

61]. To test the hypothesis that ELVs activate host macrophages, J774A.1 were treated 

with purified ELV preparations and their cytokine/chemokine responses monitored. 

J774A.1 were treated for 48 hrs with approximately 4 × 108 L3 stage vesicles, purified 

from in vitro culture medium by ultracentrifugation. The macrophage response was 

assayed using the Milliplex MAP Mouse Cytokine/Chemokine kit (EDM Millipore) 

interfaced with a Bio-Plex System (Bio-Rad) utilizing Luminex xMAP technology, a 

platform capable of simultaneously identifying and quantifying 32 cytokines/chemokines. 

Vesicle treatment effectively activated J774A.1 macrophages with significant increases in 

G-CSF, MCP-1, IL-6 and MIP-2 levels compared to control macrophages treated with 
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naïve RPMI 1640 culture media, (p ≤ 0.001) (Fig 9A). Smaller increases in LIX, 

RANTES and TNF-α were also noted. Healthy, viable L3 stage parasites produced an 

almost identical response (Fig 9A), the only difference being a modest but significant 

enhancement of G-CSF stimulation by the viable parasites (p < 0.001), suggesting that 

the dominant parasite immunogen(s) are found in the vesicle pellet. Finally, parasite 

culture media from which the ELVs had been removed by centrifugation did not produce 

this response, nor did live schistosomes (S. mansoni cercaria) or their secreted vesicles 

suggesting the Brugia-associated activation is specific to this parasite and not a general 

response to helminths or their secreted vesicles. 

The activation profile observed would be considered more indicative of a CAMΦ 

response than AAMΦ; to confirm the response was CAMΦ-like, we compared it to the 

response elicited by LPS (200 ng/mL). The only significant differences were that ELV 

treatment stimulated G-CSF and IL-6 less effectively (p < 0.001) and stimulated MCP-1 

more effectively (p < 0.001) than LPS (Fig 9B). The overall conservation of response, 

however, indicates these ELVs generate a CAMΦ phenotype. Since Wolbachia, the 

endosymbiont present in filarial nematodes, lack LPS biosynthetic capacity it seemed 

unlikely our CAMΦ-like response was driven by LPS like contamination but to rule this 

out, endotoxin levels in our vesicle preparation were determined commercially (Lonza, 

Walkersville, MD). LPS-like activity was present (0.003 ng/mL) but at a concentration 

several orders of magnitude lower than the minimum dose required to stimulate J774A.1 

macrophages [62]. As expected, treatment of macrophages with this low LPS dose was 

insufficient for activation (Fig 9C) indicating that the CAMΦ response we observe is not 

due to an LPS-like component in our preparation. 
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Since the stimulation of an AAMΦ phenotype by live Brugia and ES preparations 

thereof in vivo and in vitro has been well established [59-61] it might be expected that 

Brugia ELV preparations also stimulate a AAMΦ phenotype, especially since complete 

Brugia ES preparations are likely to include ELVs similar to those examined here, albeit 

at reduced concentrations. We observed a response consistent with a CAMΦ phenotype, 

however, although without the acute elevation in IL-β and TNF-α production others have 

seen in response to LPS [58]. One interpretation is that the CAMΦ > AAMΦ phenotype 

may be a somewhat artificial function of the homogenous J774A.1 monoculture used 

here as other studies describing a AAMΦ phenotype often use PBMC or other 

heterogeneous primary cell types. It would be instructive to monitor the responses of such 

mixed cell populations to the ELV preparation. Additionally, although the murine model 

is regarded as valuable for illuminating both how parasites establish themselves and the 

early host immune response, J774A.1 may not be optimal for studying this particular 

Brugia-host interaction and optimization with other murine or human cells may be 

required. Another interpretation, however, is that the purified ELVs examined here 

should be considered a distinct and specific fraction of the highly complex immunogenic 

facade presented by filarial parasites and may elicit a genuine CAMΦ phenotype when 

examined in isolation. Supporting this interpretation, exosomes isolated from other 

biological systems effectively generate a CAMΦ phenotype [57, 63, 64]. A key mediator 

of this pro-inflammatory response is Hsp70 [63], which was identified in our ELV 

proteomic profile. In summary, irrespective of the polarity of macrophage activation 

phenotype, our results unequivocally identify secreted ELVs as distinct parasite-derived 

structures capable of activating the host immune system. 
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A picture is emerging that parasitic helminths secrete functional exosome-like 

vesicles. The protein and small RNA cargo of these vesicles have putative effector 

functions at the host-parasite interface and potentially serve to create conditions favorable 

to the establishment or maintenance of infection. The identification of these cell-to-cell 

effector structures is exciting and prompts further investigation of their functional 

relevance. In particular, it will be important to describe the roles of individual miRNAs 

and proteins contained within the ELVs, to identify the host molecular targets being 

manipulated in vivo, and reveal any conserved or stage-specific effectors secreted across 

the parasite life cycle. Another intriguing question is whether or not there is any 

specificity or selectivity in host cells or tissues targeted and if so, what molecular 

mechanisms underscore this specificity. Addressing such questions will illuminate the 

fundamental interactions that occur between parasite and host, and may open previously 

unexploited opportunities for parasite control and diagnostics. 

Materials and Methods 

Mosquito maintenance 

Aedes aegypti (Black eyed Liverpool strain, LVP), previously selected for 

susceptibility to infection with Brugia malayi [65], were maintained in controlled 

conditions (27°C ± 1°C and 75% ± 5% relative humidity) with a 16:8 photoperiod. Adult 

mosquitoes were fed a diet of 10% sucrose. Approximately 4,000 and 2,600 mosquitos 

were used for proteomics and RNA sequencing, respectively. 
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Establishing Brugia malayi infection  

For proteomics and transcriptomics, B. malayi microfilaria (mf) infected cat blood 

was obtained from the University of Georgia NIH/NIAID Filariasis Research Reagent 

Resource Center (FR3). Blood containing the parasites was diluted with defibrinated 

sheep’s blood (Hemostat Laboratories, CA, USA) to achieve a concentration of 80–100 

mf per 20μL. To establish infection, 3- to 5-day-old Ae. Aegypti (LVP) were allowed to 

feed for one hour on a glass membrane feeder. Mosquitoes were sucrose-starved for 24 

hrs prior to blood feeding and those that did not take a blood meal were removed. 

Infected mosquitoes were maintained in the above described conditions for 13–15 days 

post infection (dpi) to allow development of parasites. 

Brugia malayi maintenance and collection of vesicle-containing media  

In exploratory studies, larval (300 L3) and adult (30 male or 30 female) B. malayi 

were procured from the FR3. On arrival, parasites were cultured in 50 mL RPMI 1640 

(Sigma-Aldrich, St. Louis, MO) at 37°C (5% CO2). Cell culture media was collected and 

replaced at 24 hr intervals for up to 72 hrs to collect secreted ELVs. For downstream 

sequencing and proteomics, B. malayi (13–15 dpi) were locally collected using methods 

described by FR3. Briefly, infected mosquitoes were immobilized by cooling to 4°C for 

15 minutes. Immobilized mosquitoes were crushed in a mortar containing 5 ml of chilled 

Hanks’ balanced salt solution (HBSS, pH 7.0) containing pen-strep (0.4 units 

penicillin/ml, 0.4 mcg streptomycin/ml). Mosquitoes were then rinsed onto a 150 mesh 

sieve contained in a deep well plastic petri dish and washed 3–4 times using fresh chilled 

HBSS + pen-strep. Sieves were then placed into petri dishes containing warm (40°C) 
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HBSS + pen-strep to allow infective larvae to migrate out. Sieves were transferred to new 

deep well petri dishes containing fresh warm HBSS every 30 minutes. Collected parasites 

were washed twice with warm HBSS + pen-strep, placed into 25 mL RPMI 1640 

containing pen-strep (0.4 units penicillin/ml, 0.4 mcg streptomycin/ml) and held at 37°C, 

5% CO2 for 24 hrs to collect secreted ELVs. 

Exosome-like vesicle purification  

Differential centrifugation was used to isolate ELVs from 25 or 50 mL aliquots of 

Brugia culture media. Aliquots were collected from 24 hr incubations of larval or adult 

worms in culture media. Lower speed centrifugation and filtration steps were used to 

remove contaminating cells (300 × g, 10 minutes) and cellular debris (10,000 × g, 15 

minutes). The resulting supernatants underwent filtration through 0.22 μm filters and 

ultracentrifugation at 105,000 × g for 90 minutes to pellet ELVs. Pellets were then 

washed with cold phosphate-buffered saline (PBS) and a final spin was carried out at 

105,000 × g for 90 minutes. Supernatants were discarded and pellets were resuspended in 

small volumes (30–250 uL) of PBS for imaging, sequencing, and proteomics, and RPMI 

for immunological assays. Samples were kept on ice and centrifugation steps were 

carried out at 4°C. Resuspended ELVs were stored at −80°C. 

Electron microscopy and nanoparticle tracking analysis  

Small aliquots of ELV suspension (3 μl) were applied to carbon coated 200 mesh 

copper grids and negatively stained with 2% uranyl acetate. Images were taken using a 

JEOL 2100 scanning and transmission electron microscope (Japan Electron Optics 

Laboratories, Akishima, Japan) at the Microscopy and NanoImaging Facility (Iowa State 
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University). Nanoparticle tracking analysis was carried out with the NanoSight LM10 

(NanoSight Ltd., Amesbury, UK) to ascertain the size and frequency distribution of 

individual vesicle preparations, assayed in triplicate. The Brownian motion of particles in 

solution is related back to particle sizes and numbers, allowing better statistical resolution 

of vesicle size and concentration [66].  

LC-MS/MS and proteomic analysis  

Protein was isolated from purified exosome-like vesicles for proteomic analysis 

(System Biosciences). Briefly, samples were modified with 10% SDS to a final 

concentration of 2% SDS, heated at 100°C for 15 minutes and clarified by centrifugation. 

Protein concentration was determined using a Qubit fluorometry assay (Invitrogen). 15 

μg of material was processed by SDS-PAGE using a 10% Bis-Tris homogeneous gel and 

the MES buffer system. In-gel digestion with trypsin was done at 37°C for 4 hrs using a 

ProGest robot (DigiLab, Marlborough, MA). The digested sample was analyzed by nano 

LC-MS/MS analysis using a Waters NanoAcquity HPLC system interfaced to a 

ThermoFisher Q Exactive. Data were searched against a copy of the B. malayi UniProt 

database (taxon ID: 6278) using a locally running copy of MASCOT (Matrix Science 

Ltd., London, UK). The search was restricted using the following parameters; maximum 

missed cleavages = 2, fixed modifications = carbamidomethyl (C), variable modifications 

= Oxidation (M), Acetyl (N-term), Pyro-Glu (N-term Q) and Deamidation (N, Q), a 

peptide mass tolerance of 10 ppm, and a fragment mass tolerance of 0.02 Da. Mascot 

DAT files were parsed into the Scaffold software for validation, filtering and to create a 

nonredundant list per sample. Data were filtered using a minimum protein value of 90%, 
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a minimum peptide value of 50% (Prophet scores) and requiring at least two unique 

peptides per protein. 

RNA isolation and sequencing  

For detection of RNA species in ELV preparations, small RNAs were 

preferentially isolated from vesicle-containing pellets using the miRCURY RNA 

Isolation Kit (Exiqon, Vedbaek, Denmark) and RNA samples were examined with an 

Agilent 2100 Bioanalyzer using the RNA 6000 Nano Kit. For small RNA sequencing 

(RNA-Seq), total RNA was isolated from ELVs released by ~5,000 L3s over a 24 hr 

incubation period using the Total RNA and Protein Isolation Kit (Invitrogen, Carlsbad, 

CA). In parallel, total RNA was isolated from whole worm tissue using a TRIzol 

(Invitrogen) protocol, where a 6 hr precipitation step was carried out at -80°C to improve 

small RNA recovery. RNA NGS libraries were constructed using modified Illumina 

adapter methods using SBI’s XRNA Sample Preparation Kit (System Biosciences, 

Mountain View, CA) and indexed with separate bar codes for multiplex sequencing on an 

Illumina MiSeq v3 instrument using a 2 × 75 bp paired end run setting. 

miRNA discovery and abundance estimation 

Raw reads were trimmed to remove adapter sequences, filtered by quality score, 

and de-multiplexed using the FASTX-Toolkit [67] (sequencing data are deposited with 

the NCBI SRA under project number PRJNA285132). The miRDeep2 pipeline was used 

to map short RNA reads (>15 nt) to the B. malayi genome for miRNA discovery, and to 

estimate and normalize miRNA abundances with respect to total miRNA read count. 

Nematode precursor and mature miRNA sequences deposited into miRBase [68] were 
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used in the pipeline, including known B. pahangi, Caenorhabditis elegans, Ascaris suum, 

Haemonchus contortus, and Strongyloides ratti miRNAs. Non-mapped reads were ranked 

by abundance, filtered for homology against known miRNAs in the phylum Nematoda 

using BLASTn [69], and incorporated for final quantification of abundance with the 

miRDeep quantifier script, allowing for capture of miRNAs that did not map to the B. 

malayi assembly due to sequencing gaps. The ggplot2 package [70] of the statistical 

programming language R was used to organize and visualize comparisons between 

vesicular and tissue RNA samples. 

Cell culture  

J774A.1 murine macrophages (ATCC, Manassas, VA) were maintained in 

complete tissue culture medium (Dulbecco’s modified Eagle’s medium, 25 mM HEPES, 

pH 7.4 supplemented with 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL 

streptomycin, 0.05 μM 2-mercaptoethanol, and 10% heat-inactivated fetal bovine serum) 

at 37°C and 5% CO2. 24 hrs prior to assays, 400 μL cells were plated in standard 24-well 

plates at a density of 5 × 105 cells/well. 

Vesicle labeling and uptake  

Exosome-like vesicles were purified from a 24 hr culture of 300 Brugia malayi 

L3 parasites as described above and labeled with the green fluorescent dye, PKH67 

(Sigma-Aldrich, St Louis, MO, USA), according to the manufacturer’s instructions. 

ELVs were incubated with PKH67 for 5 minutes at room temperature and the reaction 

terminated by addition of 1% BSA in PBS. RPMI 1640 media was added, mixed and 

centrifuged at 105,000 × g for 1 hr to separate ELV-bound PKH67 from excess PKH67. 
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Labeled ELV were washed again then resuspended in an appropriate volume of complete 

tissue culture medium (Dulbecco’s modified Eagles medium, 25 mM HEPES, pH 7.4 

supplemented with 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, 

0.05 μM 2-mercaptoethanol and 10% heat-inactivated fetal bovine serum). 

J774A.1 were labeled with red fluorescent lipophilic dye, PKH26 (Sigma-Aldrich, 

St Louis, MO), according to the manufacturer’s instructions. Macrophages were 

incubated with PKH26 for 5 minutes at room temperature and the reaction terminated by 

addition of 1% BSA. To remove excess unbound dye, samples were centrifuged at 400 × 

g for 10 minutes at room temperature and the supernatant discarded. Centrifugation was 

repeated three more times using 10 ml of complete media to ensure full removal of 

unbound dye and the cells were re-suspended in 1 mL of complete medium. 

Approximately 3 × 105 labeled cells were plated onto sterile coverslips and incubated 

overnight at 37°C/5% CO2. Labeled ELV suspension (approximately 3 × 107 per 

coverslip) was added to labeled J774A.1 and incubated for 6 hrs. Cells were washed 5 

times with ice-cold PBS to remove excess labeled ELVs, the cells fixed in 4% 

paraformaldehyde (Sigma-Aldrich), washed and counterstained with DAPI before 

mounting and storage at 4°C. Preparations were visualized using a Leica TCS SP5 X 

Confocal/multiphoton microscope system (Leica Microsystems Inc., Buffalo Grove, IL). 

Detection of macrophage modulation by Luminex assay  

Triplicate wells of adhered J774A.1 were treated with approximately 4 × 108 

purified L3 stage ELVs. The ELVs were purified by ultracentrifugation as previously 

described, resuspended in RPMI 1640 medium (Gibco/Life Technologies, Carlsbad, CA) 
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and quantified by nanoparticle tracking analysis. Other treatments were similar volumes 

of vesicle depleted L3 culture medium (supernatant created following pelleting of ELV 

fraction from spent parasite culture medium), live B. malayi L3 parasites (10 

worms/well), lipopolysaccharide (LPS; final concentration 200 ng/mL)(Sigma-Aldrich, 

St. Louis, MO), naïve RPMI 1640 culture medium and various combinations of these 

conditions. Supernatants from these cell cultures (400 μL/well) were collected 24 or 48 

hrs post-treatment and centrifuged briefly (2,000 × g for 10 minutes) to remove non-

adhered cells and cell debris before being analyzed for the presence of cytokines/ 

chemokines. The Milliplex MAP Mouse Cytokine/Chemokine kit (EDM Millipore, 

Billerica, MA) interfaced with a Bio-Plex System (Bio-Rad, Hercules, CA) utilizing 

Luminex xMAP technology (Luminex, Austin, TX) allowed the simultaneous 

identification and quantification of the following analytes in the cell culture supernatant: 

Eotaxin, G-CSF, GM-CSF, IFNγ, IL-1α, M-CSF, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-

7, IL-10, IL-12 (p40), IL-13, IL-15, IL-17, IP-10, MIP-2, KC, LIF, LIX, MCP-1, MIP-

1α, MIP-1β, MIG, RANTES, TNFα, IL-12(p70), VEGF, IL-9. Briefly, experimental 

samples, background, standards and controls were added to a 96-well plate and combined 

with equal volumes of pre-mixed, antibody coated magnetic beads; the plate was sealed 

and incubated overnight at 4°C. Following washing, 25 μL of detection antibody was 

added and the plate incubated for one hour at room temperature with shaking. 

Streptavidin-Phycoerythrin (25 μL) was added to each well and the plate incubated for a 

further hour at room temperature before washing. Finally, 150 μL assay buffer was added 

to all wells and fluorescence immediately recorded. Median fluorescent intensity data 
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were analyzed as recommended using a five-parameter logistic curve-fitting method for 

calculating cytokine/ chemokine concentration. 

G-CSF ELISA  

Triplicate wells of adhered J774A.1 cells, prepared as described above, were 

treated with LPS (final concentration 200 ng/mL or 0.003 ng/mL), approximately 4 × 108 

purified L3 stage ELVs as described above, or RPMI 1640 as negative control. Cell 

culture supernatants were collected 24 hrs after treatment, cleared via centrifugation as 

described previously and assayed for G-CSF using a Mouse G-CSF Quantikine ELISA 

kit (R&D Systems, Minneapolis, MN). Standard curves were generated using Prism 6 

software (GraphPad Software, San Diego, CA) and sample G-CSF concentrations 

determined by regression analysis. 

Statistical analysis  

For analysis of Luminex data, Tukey’s test was used to compare overall 

treatments while multiple t-tests, incorporating the Holm-Sidak method to correct for 

multiple comparisons, were used to compare individual chemokines/cytokines following 

treatments. T-tests were used to compare treatment groups following ELISA analysis. All 

statistical analyses were performed using Prism 6 for Mac (GraphPad). 
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Fig 1. Electron microscopy confirms secretion of exosome-like vesicles in intra-host 
stages of B. malayi. TEM images of L3 (A and B) and adult female (C) ELV preparations 
are shown. L3 vesicles take on a distinct morphology often reported in the literature. Adult 
isolations are more heterogenous and may require further optimization to achieve uniform 
vesicle preparation. White arrows show canonical L3 ELVs (B) and putative adult ELVs 
(C). This provides evidence for the release of exosome-like vesicles in the human-infective 
L3 stage of the parasite and much of the rest of the work we report is focused on vesicles 
derived from this larval stage. 
	   	  



www.manaraa.com

	   144 

	  

Fig 2. Particle tracking analysis reveals prolific larval Brugia exosome-like vesicle 
release rate. Profile of ELVs isolated from culture media incubated with 300 L3 parasites 
for successive 24 hr incubations. The size distribution of L3-derived ELVs from Day 1 
(left), Day 2 (center) and Day 3 (right) incubations are shown (mean ± SD). Calculated 
vesicle release rates are provided in tabular format. ELV rate of release and size specificity 
decay in a time-dependent manner in vitro. * re-scaled based on dilution for comparison to 
0–24 hour (1:20) dilution. 
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Homology-based annotation of B. malayi ELV proteins reveals hallmarks of mammalian 
exosomes, including HSP70 and translation elongation factors. Ribosomal proteins, 
histones, ras-related proteins, cathepsins, ATP synthase subunits, and other homologs of 
identified Brugia ELV proteins have also been reported in exosomes derived from 
various cell types. 
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Fig 3. Protein content of B. malayi exosome-like vesicles. GO functional annotation 
of 32 proteins identified in ELVs isolated from B. malayi L3 stage parasites. 
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Fig 4. Isolation of Small RNAs from larval and adult B. malayi ELV fractions. 
Bioanalyzer data are shown for RNAs isolated from L3, adult male, and adult female 
Brugia preparations. L3 ELVs contain significant amounts of small RNAs in the 25–200 nt 
range (25 and 200 nt reference peaks labeled), while adult male and female vesicle 
preparations yield fewer RNAs. Vesicle fractions were prepared from 300 L3 and 30 adults 
in 24 hr culture incubations. Despite the much higher total tissue amounts used in adult 
culture, we detect much higher levels of small RNAs in L3-derived ELVs. 
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Fig 5. Discovery and profiling of miRNAs in B. malayi exosome-like vesicles. (A) 
Comparative abundance of miRNAs in L3 ELV and tissue-derived samples. miRNA 
discovery and abundance estimation was carried out using the mirDeep2 pipeline. The 20 
miRNAs with highest expression in each sample were retained for comparison and 
abundance was normalized with respect to total miRNA-mapping reads within each 
sample. Normalized read count is plotted on a log scale for ELV and tissue miRNAs to 
provide a relative ordering of fractional abundance. Bma-let-7 only appears in the highly 
expressed subset, and a number of miRNAs with perfect mature sequence identity to host 
homologs are highlighted (outer blue circle). (B) Sequence conservation between B. 
malayi ELV-origin miRNAs and the host (H. sapiens) miRNA complement. Reduced 
heat map showing one-to-one homology between a given B. malayi miRNA and its nearest 
matching human counterpart in terms of percent identity. Bma-let-7, bma-miR-1, bma-
miR-9, bma-miR-92, and bma- miR-100b (white asterisks) share 100% identity with a host 
miRNA, while bma-miR-34 shows high identity with a host miRNA (21/23 nucleotides). 
This B. malayi miRNA subset (shown in blue) contains potential modulators of host gene 
expression. (C) Sequence conservation between B. malayi ELV-origin miRNA seed sites 
and host (H. sapiens) miRNA seed sites. miRNAs sharing perfectly conserved seed sites, 
defined here as nucleotides 2–8 of the mature miRNA, are marked (blue circles). 
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Fig 6. Brugia malayi ELV miRNA sequence homology to nematode and mammalian 
host miRNAs. miRNAs from B. malayi, A. suum, C. elegans, H. sapiens, and M. 
musculus were grouped by seed site sequence identity (nucleotides 2–8) for multiple 
sequence alignments. Alignments are shown for bma-let-7, bma-miR-9 and bma-miR-993. 
bma-let-7 is shown as an example of a Brugia ELV miRNA that exhibits both seed site and 
full length sequence conservation extending to other parasitic and free-living nematodes, as 
well as to mammalian host species. bma-miR-9 and bma-miR-993 are presented as 
examples where conserved parasite miRNAs have clear host homologs, yet lack one-to-
one C. elegans orthologs. 
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Fig 7. Comparison of the B. malayi ELV miRNA complement to miRNAs 
secreted by other parasitic nematodes species. (A & B) Comparison of the 20 most 
abundant B. malayi ELV miRNAs with the complements of miRNAs found 
circulating in the serum and plasma of definitive and model mammal hosts burdened 
with filarial infection (Litomosoides sigmodontis [26], Dirofilaria immitis [46], Loa 
loa [47], Onchocerca volvulus [46, 48], and Onchocerca ochengi [47]). The D. immitis 
miRNAs in (A) are restricted to the 20 most abundant miRNAs, and the O. volvulus 
miRNAs in (B) represent the combination of two non- overlapping sets arising from 
separate reports. (C) Comparison of the 20 most abundant miRNAs identified in B. 
malayi ELVs and H. polygyrus exosomes. These analyses reveal sets of common 
markers and a number of miRNAs unique to each species. 
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Fig 8. Brugia exosome-like vesicles (ELVs) are internalized by J774A.1 
macrophages. (A and D) J774A.1 macrophages were labeled with PKH26 (red) and 
counterstained with DAPI (blue) to visualize nuclei. (B and E) B. malayi L3 stage ELVs 
were purified from a 24 hr parasite culture and labeled with PKH67 (green). 3 × 105 
J774A.1 were co-incubated with approximately 3 × 107 labeled ELVs for 6 hrs at 37°C 
and washed repeatedly to remove unbound ELVs. Vesicles internalized by macrophages 
appear diffusely throughout cytoplasm and focused in discrete puncta associated with the 
cell membrane. (C and F) Merged images showing internalization of parasite ELVs. All 
images were acquired using a using a Leica TCS SP5 X Confocal/multiphoton 
microscope system with 20X (A-C) or 60X (D-F) objectives. Scale bars: 10 μm (A-C) 
and 25 μm (D-F). 
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Fig 9. Brugia exosome-like vesicles (ELVs) elicit a classically activated phenotype in 
J774A.1 macrophages. (A) J774A.1 (5 × 105) were treated with approximately 4 × 108 
purified L3 stage ELVs, live L3 stage parasites (10 worms) or naïve culture media 
(control) and supernatents collected after 48 hr. The presence of 32 cytokines/chemokines 
was simultaneously assayed using the Milliplex MAP Mouse Cytokine/ Chemokine kit 
(EDM Millipore) interfaced with a Bio-Plex System (Bio-Rad) utilizing Luminex xMAP 
technology (Luminex). The quantification of identified cytokines is presented. The 
cytokine profile generated by ELV treatment is consistent with a classically activated 
phenotype. (B) Cytokine response to ELV treatment is compared to LPS (200 ng/mL). 
The close correlation of responses indicates ELV treatment generates a classically 
activated phenotype. (C) J774A.1 (5 × 105) were treated with high dose LPS (200 ng/ 
mL), low dose LPS (0.003 ng/mL), ELV or naïve culture media (control) for 24 hr, 
supernatant collected and assayed for G-CSF using a Mouse G-CSF Quantikine ELISA 
kit (R&D Systems). The absence of response to low dose LPS suggests the classically 
activated response is not due to LPS-like contamination.	  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

Nematodes are an incredibly diverse group of organisms that inhabit terrestrial, 

freshwater and marine environments and exhibit both free-living and parasitic lifestyles 

[1]. To date, over 23,000 species of nematodes have been described; however, the actual 

number of species may exceed one million [1]. Their simple body plan belies the 

molecular intricacy that has allowed these organisms not only to adapt but also to flourish 

in a wide assortment of ecological niches.  

Here we explore chemosensation, which is an essential behavior used to detect 

environmental cues [2]. Chemosensory perception is critical for nematodes to find food, 

mates, avoid noxious condition and even in behaviors that allow parasites to identify and 

invade their hosts [3]. Our study of chemosensation focused on the response of B. malayi 

to environmental cues and how this response may facilitate transmission of this parasite. 

To further our understanding of chemosensation in nematodes, we conducted a pan-

phylum analysis to survey heterotrimeric G-proteins, which are vital for sensory 

perception in nematodes [4-6].  

Chapter 2 of this dissertation represents the first description of chemosensory 

behavior in B. malayi. This study, which focused on the infectious L3 stage of the 

parasite, demonstrated that these parasites possess the major structures required for 

sensory perception and exhibit specific tactic behaviors when exposed to different 

chemical compounds.  
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More specifically, we identified amphids in multiple life stages (L3, L4, adult 

male and adult female) of B. malayi using scanning electron microscopy. Amphids are 

the major sensory organs of nematodes, located in the head [7-9]. The pore shape of the 

amphids is highly variable among nematodes, ranging from simple slits to large complex 

structures found in many marine nematodes. This extreme anatomical variation may arise 

as a result of specific environmental adaptations. Our studies showed that amphid pores 

in B. malayi are simple, crescent shaped openings that are similar to amphid pores of a 

closely related species, Onchocerca eberhardi and less prominent than those of C. 

elegans [10]. The simplicity of amphid pore shape in B. malayi could be an adaptation to 

the niche this nematode occupies. B. malayi is a parasitic nematode that infects humans 

and is transmitted by mosquitoes. Mammalian and insect vector hosts are required for 

development and successful completion of this parasite’s life cycle, so no free-living 

stage occurs. As a result, B. malayi is exposed to relatively few chemical compounds 

compared to free-living counterparts and thus is unlikely to require specific anatomical 

adaptations that would enhance the acuity of the chemosensory system in order to thrive 

in its ecological niche.  

We used the fluorescent lipophilic dye DiI (1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate) to visualize internal sensory neuroanatomy 

across multiple life stages. Our results showed stage-specific variations in dye-filling 

patterns. For example, while amphid channels were found to dye-fill in all life stages, 

dye-filling of amphid associated socket cell bodies was only observed in L3 stage worms. 

Sheath cell bodies were observed in all but L4 stage parasites, while we were able to 

visualize the nerve ring in all but adult male B. malayi. Of note, no amphidial neurons 
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were found to dye-fill in any stage of the parasite. This is a significant departure from 

what has been observed in C. elegans, where six amphid neurons (ASH, ASI, ASK, ADL 

and AWB) were visualized using DiI [11]. Traditionally it was thought that the 

neuroanatomy of nematodes in the class Chromadorea (which includes C. elegans and B. 

malayi) is highly conserved, so the variation in dye-filling patterns observed herein was 

perhaps unexpected although not unprecedented [11-18]. Previous studies using DiI have 

shown that parasitic nematodes exhibit variation in dye-filling patterns [19, 20]. For 

example, only a single pair of amphid neurons dye-filled in the L1 stage of the APN 

Parastrongyloides trichosuri [19]. More recently, Han et al. (2015) compared dye-filling 

patterns in a number of nematode species[20]. Their research incorporated a more diverse 

group of nematodes than previous studies and demonstrated significant variation in dye-

filling between species and even between life stages within the same species [20]. Their 

results showed that like APNs, far fewer amphid neurons stain in PPNs when compared 

to free-living nematodes like C. elegans [20]. In the same study, examination of DiI 

staining in entomopathogenic parasitic nematodes (EPNs) showed stage specific 

variations [20]. No dye-filling of any sensory neuron was observed in the non-feeding 

infectious juvenile (IJ) stage (analogous to dauer stage of C. elegans) of either 

Heterorhabditis bacteriophora or in Steinernema carpocapsae [20]. In the non-IJ stages, 

amphid neuron staining was only periodically observed in either species, but the authors 

observed robust staining in other sensory neurons such as inner labial and phasmid 

neurons in S. carpocapsae [20]. Our results are consistent with these findings and suggest 

that, although the architecture of sensory anatomy is generally considered conserved 
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across the phylum, modifications to sensory neurons exist between species and that these 

alterations may be a result of stage- and niche-specific adaptations.  

Identification of the sensory neuroanatomy in B. malayi led us to question 

whether or not these parasites would exhibit distinct behavioral responses when exposed 

to different stimuli. Previous investigations of chemosensation in C. elegans showed that 

this nematode has a robust chemosensory response with the ability to respond to 

hundreds of compounds in a concentration-dependent manner [21]. In contrast, our 

understanding of chemosensory behavior in parasitic nematodes is very limited. Those 

studies performed show that parasites have the capacity to respond to environmental cues 

and that this behavior plays roles in the parasite’s ability to identify and invade suitable 

hosts [3]. Based on the data, parasitic nematodes appear to exhibit differential responses 

to chemical compounds and that these responses are reflective of the host-specificity of 

the parasite [22-26]. However, chemosensory perception has only been examined in a 

few parasites and no functional work has been completed to date. This knowledge gap 

underscores the need for additional studies focusing on chemosensation in parasitic 

nematodes. The research presented in this chapter demonstrates that infectious L3 stage 

B. malayi exhibit distinct tactic behaviors in response to a variety of chemical 

compounds. Using a modified chemotaxis plate assay, we determined that B. malayi 

perceives and responds to odorant and gustatory compounds.  

B. malayi exhibited either no response or was actually repelled by odorants 

present in human sweat. These results suggest that chemosensation in parasitic nematodes 

may underpin transmission. B. malayi is transmitted by mosquitoes and thus is delivered 

passively to a potential host unlike, for example, the skin-penetrating parasite, 
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Strongyloides stercoralis, which must actively seek out an appropriate host. When 

infected mosquitoes take a blood meal, B. malayi L3s migrate out of the proboscis onto 

the skin of the prospective host. Once on the skin these parasites must be able to navigate 

away from the skin surface and penetrate the host by finding and entering the wound 

track left by the mosquito. In contrast to compounds found on host skin, which were 

repellent, compounds present within the host such as L-lactic acid and human serum were 

attractive to L3 stage parasites indicating that positive and negative chemotaxis 

coordinate to drive transmission of this parasite. The adverse response to compounds 

present on human skin may facilitate transmission of B. malayi by providing a negative 

stimulus to direct the parasite to the wound track left by the mosquito, while the attraction 

to subdermal compounds may act as signals providing further direction for the parasite. 

Thus these contrasting responses to host-derived compounds may function synergistically 

to facilitate dermal penetration and establishment of infection. 

Although further studies are needed to fully characterize the role of chemosensory 

perception in the transmission of filarial worms, the data presented here point to a 

functional chemosensory system in B. malayi that facilitates parasite infection. It follows 

that perturbation of this chemosensory behavior in B. malayi may disrupt transmission of 

the parasite and could be exploited for control purposes. Chemosensation in B. malayi 

could be disrupted through the use of genetically modified mosquitoes expressing 

inverted repeat (IR) RNA sequences that are capable of suppressing nematode genes that 

are crucial for chemosensory perception. IR-RNAs forms dsRNA that would trigger RNA 

interference (RNAi) within the mosquito. This mechanism has already been shown to be 

successful in enhancing resistance to dengue type 2 viruses in transgenic Aedes aegypti 
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[27]. In addition, as shown in the Appendix of this dissertation and in Song et al. (2010), 

we have developed an in vivo method for suppression of B. malayi genes within the 

mosquito host and demonstrated that this method successfully suppressed genes 

important for molting which resulted in aberrant phenotypes that could disrupt 

transmission of the parasite [28]. Transgenic mosquitoes expressing proteins that bind to 

key chemoreceptors is another method that could be employed to disrupt chemosensory 

behavior in nematodes. For instance, it may be possible to engineer a transgenic mosquito 

using clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR 

associated (Cas) genes to insert a gene expressing a peptide that binds to a B. malayi G-

protein coupled receptor (GPCR) involved in chemosensory behavior. This may 

conceptually prevent ligand (an environmental odorant or gustatory compound) binding 

through competitive inhibition and thus disrupt the parasite’s chemosensory response. A 

gene drive system could be used to rapidly spread this gene throughout the mosquito 

population, potentially leading to fixation. Gene drive using selfish elements like Medea 

is an ideal system to exploit for this method of control because a gene of interest (even a 

detrimental one) can rapidly spread (within a few generations) throughout a target 

population and potentially lead to fixation [29]. These types of strategies could be applied 

to target any gene needed for chemosensation in nematodes thus this approach could 

apply to a host of filaroid parasites that are vector-borne. In addition, the plasticity of this 

approach will allow researchers to modify their targets in the event that the nematode 

develops resistance. Finally, disruption of chemosensation in parasitic nematodes does 

not kill the parasite directly and thus targeting these genes would disrupt transmission 
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while minimizing any negative selection pressure exerted on the parasite, which could 

reduce resistance development in the parasite.   

In order to explore the feasibility of novel control approaches targeting genes and 

proteins involved in chemosensation, we needed to gain a better understanding of the 

underlying mechanisms involved in chemosensation in nematodes. To this end, we 

conducted a pan-phylum survey of heterotrimeric G-proteins, which have been shown to 

be essential in sensory perception in nematodes. In Chapter 3, we explored heterotrimeric 

G-proteins, which are composed of α, β and γ subunits, and are fundamental components 

of G-protein signaling [30]. G-protein signaling pathways are a major mechanism used 

by eukaryotes to process and translate signals from the environment into cellular actions, 

including chemosensation in nematodes. Our analysis employed both bioinformatic and 

phylogenetic approaches using a data set that included genomes from more than 70 

nematode species, representing four clades (I, III, IV and V) and both classes (Enoplea 

and Chromadorea) in Nematoda, and therefore is the most comprehensive analysis of 

heterotrimeric G-proteins in nematodes to date.  

In C. elegans, 22 G-protein α subunits (GPAs) have been identified, of which 16 

(GPA 1-3, 5-11, 13-15, 17-18 and ODR-3) have no clear homologs outside of Nematoda 

and are therefore considered to be “nematode-specific” [4, 5].  Using all 22 C. elegans 

GPAs to seed our homology search, we identified over 1000 putative GPA homologs.  

In C. elegans, the overwhelming majority of nematode-specific GPAs (gpa 1-3, 5-

6, 8-11, 13-15 and odr-3) are expressed either exclusively or primarily in amphid 

neurons, indicating that these GPAs function in signal transduction pathways related to 
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nematode sensory behavior [5]. Notably, our data set revealed that homologs of known 

sensory GPAs are restricted to nematodes in the class Chromadorea (nematodes in clades 

III, IV, V). This observation poses an interesting problem because these nematode-

specific GPAs are thought to be integral for sensory behavior and their absence in class 

Enoplea (clade I) brings into question the mechanisms mediating sensory behavior in 

Enoplean nematodes.  

Nematodes belonging to clade III are all APNs; moreover with the exception of 

roundworm eggs excreted in host feces, these nematodes spend their entire life within a 

host (i.e. they have no free-living stage). Clade III nematodes, including B. malayi, 

possess far fewer GPAs than clade V nematodes, including C. elegans. A more simplified 

GPA complement makes sense; clade III nematodes lack free-living stages and thus 

would only need to respond to a set of very specific host cues. By comparison, clade V 

nematodes all have a free-living stage, so have the need to distinguish between 

innumerable cues present in the environment in order to survive. Our data set was 

restricted to published genomes, however it would be interesting to examine gpa 

expression during different life stages of nematodes because this type of analysis would 

reveal stage-specific expression and perhaps subsets of GPAs that exhibit particular 

transcript abundance to correlate to environmental settings occupied during that stage. 

These data would be especially important with relation to parasite control because it 

would allow us identify those GPAs that function to facilitate transmission of the parasite 

at specific life stages.  

C. elegans GPA-3 and ODR-3 mutants showed significant chemosensory defects 

when exposed to gustatory or olfactory compounds [5]. These results indicate that gpa-3 



www.manaraa.com

	   161 

and odr-3 are crucial for chemosensation in this nematode. Our analysis revealed the 

presence of both of these genes in the B. malayi genome. The number of nematode-

specific GPAs in B. malayi is significantly less than what has been observed in C. 

elegans and the conservation of GPA-3 and ODR-3 suggest an essential role for these 

proteins in chemosensation in all nematodes. Building on our strategies for control, 

disruption of these proteins could lead to aberrant chemosensory behavior, which could 

prevent parasite transmission from vector to vertebrate host. In support of this, 

chemosensory responses to both gustatory and odorant compounds are severely perturbed 

in C. elegans GPA-3 mutants [5]. GPA-3 may have similar functions in B. malayi and if 

so, disruption of B. malayi GPA-3 may interrupt chemosensation in this parasite. The 

work presented in Chapter 2 of this dissertation suggests that B. malayi use 

chemosensation to identify and invade host tissues in order to establish infection. By 

suppressing GPA-3 in B. malayi we could disrupt the chemosensory response and prevent 

the parasite from identifying and invading the host before the parasite desiccates and dies 

which would effectively prevent transmission of B. malayi from the mosquito vector to 

the human host.  

We also identified a novel G-protein γ subunit (GPC-3) that was present in the 

majority of genomes surveyed. It was notably absent in Caenorhabditis species, 

suggesting that this γ subunit was lost prior to divergence of this genus. We have yet to 

interrogate the function of GPC-3, but the broad conservation of this γ subunit suggests it 

is generally important for nematode biology. Examination of Ascaris suum transcriptomic 

datasets revealed that gpc-3 expression is highest in the pharyngeal region [31]. This area 

of the nematode contains amphidial neurons so it is reasonable to speculate that gpc-3, 
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like gpc-1, is expressed at least in part in sensory neurons. Notably, more than half of the 

APN genomes examined included all three gpc genes. Why animal parasitic nematodes 

would have an additional sensory restricted γ subunit is unclear but it may reflect specific 

adaptations to a parasitic life strategy. It is possible that GPC-3 may have had a sensory 

function initially but the GPA lineage expansion in Caenorhabditis may have negated the 

need for GPC-3 leading to the loss of this γ subunit in Caenorhabditis spp. In contrast, 

parasitic nematodes have undergone significantly less GPA expansion; therefore GPC-3 

might still have a function in these nematodes.  

Chemosensation alone does not explain how parasitic nematodes successfully 

establish and maintain infections in their preferred hosts. In order to establish an 

infection, these parasites must not only be able to respond to external cues but must also 

have mechanisms to manipulate the external and host environment. Our understanding of 

the mechanisms involved in establishment and maintenance of B. malayi infection is 

limited, although one possibility is that parasites produce extracellular vesicles to mediate 

interactions with particular cells and tissues. To explore this possibility, we investigated 

exosome-like vesicles (ELVs) and their role as vehicles for the delivery of bioactive 

molecules such as miRNAs and proteins that are used to manipulate the host immune 

response in the establishment and maintenance of infection.  

In Chapter 4 of this dissertation, we describe the identification and partial 

characterization of exosome-like vesicles (ELVs) in B. malayi. Exosomes are small 

extracellular vesicles (30-120 nm) that are secreted by a number of cell types and in 

bodily fluids [32]. These vesicles contain bioactive molecules including proteins and 

small RNAs making them potent vehicles for cell-to-cell communication [32]. A number 
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of parasites such as Trichomonas vaginalis and Heligmosomoides polygyrus secrete 

ELVs, which are important mediators of host-parasite interactions during infection with 

these parasites [33, 34]. We therefore sought to determine if B. malayi also secreted 

exosomes and if so, what role these vesicles play in the establishment and maintenance of 

infection in the human host. Using electron microscopy and nanoparticle tracking 

analysis, we identified ELVs released by the infectious L3 stage B. malayi. It was 

revealed that L3s release prodigious amounts of ELVs when compared to adult stages. 

The L3 stage is the stage which B. malayi is transmitted from the mosquito vector to the 

human host and the release of copious amounts of exosome-like vesicles at this stage 

suggests that ELVs may function in the establishment of infection in the human host.  

We established that L3 stage B. malayi release ELVs and proteomics and RNA-

seq revealed that these vesicles contain diverse protein and miRNA cargo. Comparisons 

between ELV and tissue fractions showed that predictable and considerable conservation 

exists between the two fractions, however there are also notable differences, indicting an 

underlying mechanism for the packaging of select bioactive molecules. This observation 

further indicates that B. malayi secreted exosome-like vesicles are involved in mediating 

infection with this parasite. For example, the miRNA Bma-let-7 is significantly enriched 

in B. malayi L3 ELVs and shares perfect sequence identity with human let-7. In 

vertebrates, let-7 family miRNAs target a number of genes involved in fundamental 

processes including cell proliferation, apoptosis, innate immunity and even cancer 

development [35-37]. In addition, let-7 miRNAs orchestrate host-pathogen 

communications for several pathogens [38-40]. Infection with a pathogen down-regulates 

macrophage let-7 expression, which in turn acts on Toll-like receptors including TLR4 to 
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stimulate production of the major immune-modulatory cytokines IL-6 and IL-10 from 

macrophages [38, 39, 41]. Our work here demonstrates that B. malayi ELVs are 

internalized by host macrophages and stimulate an immunological response in these cells. 

Macrophage activation is broadly divided into either classically activated (CAMΦ) or 

alternatively activated (AAMΦ) depending on the phenotype elicited. CAMΦ, which is 

stimulated by LPS or IFN-γ, is typically associated with a pro-inflammatory phenotype 

while AAMΦ, elicited by IL-4 and IL-3, is immunosuppressive or anti-inflammatory [42, 

43]. Of note, B. malayi ELVs stimulated a classically activated phenotype in J774A.1 

murine macrophages. Typically, nematode infection is associated with an AAMΦ 

phenotype although experiments using B. malayi have been shown to stimulate both 

CAMΦ and AAMΦ phenotypes [44-47]. It has been shown that purified exosomes from 

other biological systems induce CAMΦ phenotypes indicating that our observation may 

represent a distinct immunological reaction in response to ELVs [48-50].  

Taken together these data indicate that manipulation of ELVs in B. malayi L3s 

has the potential to negatively impact the parasite, which could be exploited for control. 

For instance, B. malayi secretion of ELVs containing let-7 that is identical to human let-7 

may act to allow the parasite to essentially “hide” from the host immune response. Upon 

infection parasite-derived let-7 may act in place of human let-7 to keep total let-7 

expression high. This in turn could prevent activation of macrophages and thus the 

release of important host immune factors thereby allowing L3 stage parasites to migrate 

to the lymphatics of the host unmolested. If true, disruption of B. malayi ELV production 

or release would allow the host immune response to proceed uninhibited and thus prevent 

the establishment of infection with this parasite.  
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The association between parasite and host during the establishment and 

maintenance of infection is a complex and dynamic relationship. All of the knowledge 

gained from this dissertation provides the foundation for future work on both the function 

of perception physiology and behavior and host manipulation by exosome-like vesicle 

production in B. malayi. A better understanding of the mechanisms mediating 

chemosensation in B. malayi will reveal how critical chemosensation is to the 

establishment of infection and may lead to the development of innovative strategies of 

control. B. malayi ELVs are important in the transfer of bioactive molecules from the 

parasite to the host. Expanding our knowledgebase to include additional life stages will 

provide a clearer picture of the role ELVs have in host-parasite interactions and could 

identify novel targets for intervention. B. malayi adults can persist in the host lymphatics 

for years suggesting that modulation of the host immune response is crucial. Interrogating 

the function and cargo of ELVs in adult parasites may provide a clearer understanding of 

the interactions that facilitate this persistence and identify potential targets that can be 

exploited for treatment of these long-lived stages.  
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Introduction 

Lymphatic filariasis (LF) is a devastating disease caused by filarial nematodes 

that are transmitted from human to human by infected mosquitoes [1]. LF is a disfiguring 

disease characterized by damage to lymphatic vessels leading to severely disabling and 

chronic symptoms including lymphedema, elephantiasis and hydrocele [1]. Globally the 

impact of LF is immense, over 1 billion people are at risk for contracting LF while more 

than 120 million are infected with 40 million suffering from severe manifestations of the 

disease [1]. To combat LF, the Global Program for the Elimination of Lymphatic 

Filariasis (GPELF) was established in 2000 with the ambitious goal of eradicating LF by 

2020 [1]. The strategy of GPELF is to disrupt transmission of LF through the 

implementation of mass drug administration (MDA) and to alleviate suffering of infected 

individuals [2]. MDA for prevention of LF is centered on reducing transmission through 

yearly administration of the anthelmintic drugs, albendazole plus either 
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diethylcarbamazine (DEC) or ivermectin, to all eligible individuals in endemic areas for 

at least five years [3]. Through the GPELF, disease prevalence has been reduced in many 

areas, however LF remains a significant health concern [2]. There are multiple factors 

that contribute to continued transmission but a significant barrier to success is the limited 

effectiveness of available chemotherapeutics. None of the drugs used for LF treatment 

are effective against the adult stages of the parasite, which is significant because the 

adults can live in the lymphatic system for up to 10 years [4-6]. The inefficacy against 

critical life stages combined with adverse side effects and the threat of resistance 

underscores the need for the development of novel chemotherapeutics.  

A major barrier to the development of novel anthelmintic drugs is the 

intractability of parasitic nematodes to many common experimental protocols such as 

RNA interference (RNAi). RNAi is a reverse genetics technique that allows researchers 

to interrogate gene function by silencing gene expression [7]. Since the discovery of 

RNAi, it has rapidly become a standard tool to identify and validate potential new drug 

targets for use in rational drug discovery [8]. RNAi in parasitic nematodes of animals has 

had sporadic success using traditional protocols such as soaking or feeding [9-12]. One 

hypothesis to explain the variable effects of RNAi in parasitic nematodes is that the 

method of dsRNA delivery using traditional protocols is inappropriate for parasitic 

nematodes [13]. In support of this hypothesis, our lab developed an “in squito” protocol 

to that resulted in successful suppression of expression of cathepsin L-like cysteine 

protease 1 (Bm-cpl-1) and led to aberrant phenotypes that impacted molting and motility 

in infectious L3 stage B. malayi [14]. While our protocol was successful, it was not 

without caveats. For instance, establishment parasite infection within the mosquito host, 
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Aedes aegypti, required purification of microfilariae (mf) from host blood and 

intrathoracic microinjection of the mf into the mosquito host [14]. The combination of 

both methods was not only time consuming but required the use of specialized equipment 

and also resulted in a significant reduction of viable parasites available for study. These 

limitations severely restricted our ability to interrogate gene function in a high-

throughput manner and thus led us to investigate blood feeding as an alternative method 

to establish B. malayi infection in Ae. aegypti.  

Materials and Methods 

Mosquito maintenance 

Adult female Aedes aegypti (Black eyed Liverpool strain, LVP), previously 

selected for susceptibility to infection with B. malayi [15], were fed a diet of 10% sucrose 

and maintained in controlled conditions (27°C ± 1°C and 75% ± 5% relative humidity) 

with a 16:8 photoperiod.  

Establishment of Brugia malayi infection 

B. malayi - infected cat blood was obtained from the University of Georgia 

NIH/NIAID Filariasis Research Reagent Resource Center (FR3). Blood containing the 

parasites was diluted with defibrinated sheep blood (Hemostat Laboratories, CA, USA) to 

achieve a concentration of 80-100 mf per 20 µl. To establish infection, three- to five-day-

old female Ae. aegypti (LVP) were allowed to feed for one hour on a water-warmed 

water-jacketed glass membrane feeder through a Parafilm membrane. Mosquitoes were 

sucrose-starved for 24 hrs prior to blood feeding and those that did not take a blood meal 

were removed from the experiment.  
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RT-PCR/Time course experiments 

In order to determine transcript patterns of cathepsin genes in B. malayi, 10 

infected adult female Ae. aegypti were collected 1-14 days post infection (dpi). In 

addition, 10 uninfected adult female Ae. aegypti were collected at 14 dpi to demonstrate 

that cathepsin primers do not amplify mosquito genes. Total RNA was extracted from all 

mosquito pools (1-14 dpi and uninfected) using RNAqueous Total RNA Isolation Kit 

(Thermo Fisher Scientific, Waltham, MA, USA) and DNase treated using TURBO DNA-

Free Kit (Thermo Fisher Scientific, Waltham, MA, USA). This RNA was used as 

template for cDNA synthesis using ImProm-II Reverse Transcription System (Promega, 

Madison, WI, USA). The oligonucleotide primers used for each gene are shown in Table 

1. PCR reactions (25 µL) were carried out for each gene using the PCR conditions: 94°C 

for five minutes, 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds, 72°C for one 

minute followed by one cycle of 72°C for 15 minutes. All reactions were visualized on a 

1% agarose gel containing ethidium bromide. 

dsRNA generation and injection protocol 

dsRNA triggers were generated in house using a T7 transcription-based approach. 

Transcription templates were PCR amplified from B. malayi cDNA using gene specific 

oligonucleotides designed to incorporate a T7 promoter sequence 

(TAATACGACTCACTATAGGGTACT) at both 5’ and 3’ ends of the amplicon. The 

corresponding location of the Bm-cpl-1 dsRNA duplex was chosen because this region 

shares little homology with other cathepsin genes and thus increasing specificity of this 
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dsRNA trigger. To generate template for dsRNA synthesis targeted to Bm-cpl-1 

oligonucleotide sequences were: L1T7dsRNA-F 5’ 

TAATACGACTCACTATAGGGTACTACGCTTACCAAGTTC 3’ and L1T7dsRNA-R 

5’ TAATACGACTCACTATAGCCTACTCGACAACAACAGGTC 3’. Bm-cpl-4 and 

Bm-cpl-5 share 94% sequence identity [16] and we were unable to identify and region of 

the genes that lacked homology for spans of 19 nucleotides thus it was assumed that Bm-

cpl-4 dsRNA and Bm-cpl-5 dsRNA will cross target each other (Bm-cpl-4/5). To enhance 

our chances for successful suppression, two Bm-cpl-4/5 dsRNA triggers were generated: 

one to target the 5’ end of the genes and the other to target the 3’ end of the gene. To 

generate template for dsRNA synthesis targeted to Bm-cpl-4/5 oligonucleotide sequences 

were: T7CPL4-F1 5’ 

TAATACGACTCACTATAGGGTACTATCCTAGCCGATTTTGCTGTC 3’, T7CPL4-

R1 5’ TAATACGACTCACTATAGGGTACTCCTTGGGTCATACCTATAAAACCT 

3’, T7CPL4-F2 5’ 

TAATACGACTCACTATAGGGTACTGCATCAAGATATGGAATAGCAATGG 3’ 

and T7CPL4-R2 5’ 

TAATACGACTCACTATAGGGTACTTCAAATCGGAAATGAAGCAGCG 3’. To 

confirm that our results were specific and not due to exogenous dsRNA, we generated 

dsRNA targeting LacZ as a random exogenous RNA.  To generate template for dsRNA 

synthesis targeted to Bm-tph-1 oligonucleotide sequences were: LacZ400-F 5’ 

TAATACGACTCACTATAGGGCGTAATCATGGTCATAGCTGTTTCC 3’ and 

LacZ400-R 5’ TAATACGACTCACTATAGGGCTTTTGCTGGCCTTTTGCTC 3’. 

dsRNA duplexes were generated using the MEGAscript RNAi kit (Thermo Fisher 
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Scientific, Waltham, MA, USA) according to manufacturer’s protocols. dsRNA was 

quantified using NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) prior 

to use. Timing of dsRNA injection was determined based on target gene expression 

(Figure 1) and parasite stage of interest: Bm-cpl-1 dsRNA was injected 10 dpi to target 

the L3 stage of the parasite while Bm-cpl-4/5 dsRNA was injected 5 dpi to target the L2 

stage of the parasite [17].  Throughout the study mosquitoes to be injected were cold 

anesthetized and immobilized on a vacuum saddle for intrathoracic microinjection at the 

base of the head using a pulled borosilicate glass pipette attached to a manual syringe 

[14]. The mosquitoes were collected and processed 48 hrs post dsRNA injection to 

confirm target gene suppression and assess resulting phenotypes. 

Relative Semi-quantitative multiplex RT-PCR  

B. malayi infected, RNA-treated and control mosquitoes were cold anesthetized 

on ice. Total RNA was extracted from individual mosquitoes using TRIzol (Thermo 

Fisher Scientific, Waltham, MA, USA), DNase treated using TURBO DNA-free kit and 

quantified using NanoDrop 2000 prior to use. The resulting RNA served as a template for 

relative semi-quantitative multiplex RT-PCR using the SuperScript III one-step RT-PCR 

system with Platinum Taq DNA polymerase (Thermo Fisher Scientific, Waltham, MA, 

USA). The principle behind this reaction is to PCR amplify a target gene and compare its 

intensity to a multiplexed internal control during the linear phase of the reaction. Tumor 

protein homolog (Bm-tph-1, accession number U80971) was chosen as the internal 

control for this reaction because it is expressed throughout the life of the parasite and it 

had previously shown it to be an appropriate internal control [18]. The oligonucleotide 

primers used for each gene are shown in Table 2. PCR reactions (25 µL) were carried out 
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for each gene using the PCR conditions: cDNA synthesis at 50°C for 30 minutes, initial 

denaturation at 94°C for five minutes, 35 cycles of 94°C for 30 seconds, 55°C for 30 

seconds, 72°C for one minute followed by a final extension phase of 72°C for 15 

minutes. Reactions were visualized on a 1% agarose gel containing ethidium bromide. 

Phenotype analysis 

Parasite prevalence, location and motility were observed to identify any aberrant 

effects that occurred as a result of target gene suppression. At 14 dpi, RNAi treated and 

control L3 stage B. malayi were harvested for phenotype analysis. To harvest L3 stage 

parasites, infected adult female Ae. aegypti were cold-anesthetized on ice and dissected 

into three sections (head and proboscis, thorax and abdomen) in separate drops of room 

temperature Aedes physiological saline [19], and parasites were allowed to migrate out of 

the mosquito into the saline solution. Digital images of RNAi treated and control 

parasites were captured using a Nikon Eclipse 50i compound fluorescent microscope 

(Nikon, Japan). 

Statistical analysis 

One-way ANOVA with Tukey’s post-tests were used to analyze the effects of 

RNAi treatment on gene expression in semi quantitative RT-PCR experiments. In all 

tests, P values ≤ 0.05 were considered significant. All statistical analyses were performed 

using Prism 6 for Mac (GraphPad). 
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Results and Discussion 

B. malayi cathepsin cysteine proteases are differentially expressed throughout the 

mosquito stages of the parasite life cycle.  

Cathepsin cysteine proteases have been shown to be integral components in the 

molting pathway of parasitic nematodes [16, 20-23]. Inhibition of these proteins resulted 

in significant impairment of the L3 to L4 molt in filarial worms making them attractive 

targets for the development of novel chemotherapeutics [21-23]. While cathepsin cysteine 

proteases have been shown to be important in molting the specific role of each cathepsin 

in molting remains unknown. We were previously able to successfully suppress cathepsin 

L-like cysteine protease 1 (Bm-cpl-1) expression and elicit aberrant phenotypes that 

disrupted molting and development [14] thus we chose to focus on suppression of 

cathepsin cysteine proteases using our modified protocol. To date, eight cathepsin L-like 

genes, one cathepsin F and one cathepsin Z gene have been identified in B. malayi [22]. 

Using RT-PCR, we determined that each B. malayi cathepsin gene had a different 

transcriptional profile suggesting that these genes have differential functions throughout 

the mosquito stages of the parasite life cycle (Figure 1). Transcription of Bm-cpl-1 was 

observed only during the L3 stage of the parasite (Figure 1) while Bm-cpl-5 transcription 

spanned both the L2 and L3 stages of B. malayi (Figure 1). Bm-cpl-4 transcription was 

restricted to L2 and early L3 stage parasites (Figure1). Cathepsin L-like cysteine protease 

8 and cathepsin Z was transcribed throughout the parasite’s development within the 

mosquito (Figure 1). Transcription of cathepsin F was observed in all life stages analyzed 

with the exception of the L1 stage (Figure 1).  
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Our modified in squito approach results in robust Bm-cpl-1 gene suppression  

In order for our modified protocol to be successful, we not only needed to 

establish infection but we also needed to be able to successfully suppress genes of interest 

using RNAi. Our previous success suppressing Bm-cpl-1 using our in squito protocol led 

us to use this gene to test our modified in squito protocol. We have previously shown that 

we could achieve significant suppression of Bm-cpl-1 using as little as 150 ng of the 

dsRNA trigger [14]. In support of our previous results, injection of 150 ng Bm-cpl-1 

dsRNA potently and specifically suppressed Bm-cpl-1 transcript abundance (Figure 2). 

Injection with 150 ng Bm-cpl-1 dsRNA resulted in complete suppression of Bm-cpl-1 in 

80% of the treated samples tested (P-value ≤ 0.001) (Figure 2A, B). However, parasite 

prevalence was unaffected (Figure 2C) as was mosquito survival (data not shown). This 

contrasts with our previous results which demonstrated that the prevalence of L3 stage B. 

malayi was reduced when compared to controls [14]. Overall, we saw an increase in 

parasite prevalence and mosquito survival when compared to our previous results, which 

may be due to a decrease in virulence of the parasites that were used for the experiments. 

Suppression of Bm-cpl-1 expression also produced kinking phenotypes that are likely to 

inhibit or even prevent parasite transmission from the mosquito to the human host (Figure 

3). We observed kinking at both ends of parasites exposed to Bm-cpl-1 dsRNA (Figure 3). 

This phenotype was only observed in parasites exposed to Bm-cpl-1 leading us to the 

conclusion that this phenotype was a result of Bm-cpl-1 suppression. Additionally, this 

phenotype was observed previously in Bm-cpl-1 dsRNA exposed parasites using our 

original protocol [14]. Parasites that exhibited this phenotype were virtually non-motile 

which illustrates that suppression of Bm-cpl-1 in L3 stage B. malayi could inhibit or 
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disrupt transmission because parasites with this phenotype would not be able to migrate 

out of the mosquito to infect the human host. We repeated these experiments using 150 

ng dsRNA targeting LacZ as a random exogenous RNA to confirm that our results were 

specific and not due to exogenous dsRNA suppressing Bm-cpl-1 expression or 

impairment of parasite motility (Figure 2 and 3). These experiments were nearly identical 

to our saline injected and uninjected controls confirming the specificity of the results we 

observed in our Bm-cpl-1 suppressed parasites (Figure 2 and 3). 

Bm-cpl-4/5 gene expression is not suppressed using our modified in squito approach 

Bm-cpl-4 and Bm-cpl-5 share 94% sequence identity [16]. The high percent of 

shared sequence identity between the two genes makes it unlikely that we would be able 

to target one gene without cross-targeting the other therefore we assumed that we were 

targeting both genes simultaneously (Bm-cpl-4/5) using our RNAi triggers. While we 

were able to achieve consistent suppression of Bm-cpl-1 expression using our modified in 

squito approach we were not able to suppress Bm-cpl-4/5 expression (Figure 4). There are 

a number of possible reasons for the lack of suppression observed. We were not able to 

target Bm-cpl-4 or Bm-cpl-5 individually using dsRNA as our RNAi trigger, which may 

have been the cause of our inability to suppress the genes in squito as our trigger was 

likely targeting both genes however we tested using both 500 ng and 1 µg of our RNAi 

triggers in order to compensate for this possibility (Figure 4). It is also possible that the 

regions we targeted were not amenable to suppression using RNAi. To avoid this 

possibility, we designed RNAi triggers that targeted both the 5’ and 3’ end, however 

neither trigger was successful (Figure 4). The regions that we can target that may result in 

specific suppression are extremely limited due to the high shared sequence identity 
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between Bm-cpl-4 and Bm-cpl-5; therefore if repeating this experiment it would be ideal 

to use siRNA as an RNAi trigger. Specifically, we could repeat our experiments using 

siRNA targeting the 3’ untranslated region of each gene to specifically target each gene, 

but we have not validated the use of siRNA in gene suppression in the in squito model. 

Finally, the timing of dsRNA injection may also have led to our failure to see 

suppression. We injected our RNAi trigger 5 dpi which is during the L2 stage of the 

parasite because Bm-cpl-4 expression appears to be highest during the L2 to L3 molt, 

which may not be a B. malayi stage that is amenable to suppression.  

To date, there are no studies available that have targeted developmental stages 

prior to L3 and shown successful suppression. If we were to repeat this experiment it 

would be interesting to see if we could achieve Bm-cpl-4/5 suppression by injecting the 

RNA trigger at a later time point. Suppression of Bm-cpl-1 could be achieved as early as 

7 dpi and because both Bm-cpl-4 and Bm-cpl-5 are expressed at 7 dpi it would be 

worthwhile to inject Bm-cpl-4/5 dsRNA at this time point to determine if we could 

successfully suppress these genes. In addition, we could specifically target Bm-cpl-5 at a 

later time point by injecting our RNAi trigger later (at 10 dpi for example).  

In conclusion, while we demonstrated that our modified in squito protocol can be 

used to specifically suppress Bm-cpl-1 in a more convenient and high-throughput manner, 

we failed to show suppression of Bm-cpl-4/5 suggesting that our protocol will need 

further optimization specific to each gene of interest.  
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Table 1. Oligonucleotides used to amplify cathepsin genes from B. malayi.	  

Target Oligonucleotide sequence (5' to 3') Amplicon size (Bp) 

Cathepsin L1 Forward: ACGCTTACCAAGTTC 410 
Reverse: CGACAACAACAGGTC 

Cathepsin 
L2/L3/L7 

Forward: CGGAACCAATTCGATTACT 397 
Reverse: CCACTACAATCCATTACATCCT 

Cathepsin L4 Forward: GGCAGGCTAATAGGTTTTATAGG 369 
Reverse: CATTGTCTGTAACAACAGCGATA 

Cathepsin L5 Forward: CAGACTTCTGAATTTTATAGGTATGAT 361 
Reverse: CATTATCCTTGGCAACAGC 

Cathepsin L8 Forward: GGAACATCGTCGATTTATGACA 720 
Reverse: CCAACAGCAAGTAAAGCATGG 

Cathepsin F Forward: ATGTTCTGATTATGTTCCATCG 511 
Reverse: CCAAAGACTTTCAATATTACCG 

Cathepsin Z Forward: GGATTGTAACGTAAATGG 438 
Reverse: GCGATTGGACCATGATGATAA 

Tumor Protein 
Homolog 

Forward: CTTGCGTCGGACTCGTTC 463 
Reverse: CACCTCACCATCTTCTTCATCTC 
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Table 2. Oligonucleotides used to assess suppression of B. malayi cathepsin genes.	  

Target Primer sequence (5' to 3') 
Amplicon size 
(Bp) 

Cathepsin L1 Forward: ACGCTTACCAAGTTC 410 
Reverse: CGACAACAACAGGTC 

Cathepsin L4/L5 5' end Forward: ATCCTAGCCGATTTTGCTGTC 498 
Reverse: CCTTGGGTCATACCTATAAAACCT 

Cathepsin L4/L5 3' end 
Forward: 
GCATCAAGATATGGAATAGCAATGG 417 
Reverse: TCAAATCGGAAATGAAGCAGCG 

Tumor Protein 
Homolog 

Forward: ATGAACAAGTGAAGTGTGCTTGC 605 
Reverse: GAAGGGAATACGGCTGATGC 
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Figure 1. B. malayi cathepsin genes are differentially expressed throughout the 
mosquito stages of the life cycle. Amplification of B. malayi cathepsin genes from 
infected adult female Ae. aegypti (LVP) total RNA collected 1-14 day post infection 
(dpi). Amplification using gene-specific primers of all cathepsin genes was visualized in 
the expected sizes. Tumor protein homolog is a nematode specific gene that is expressed 
throughout the life of the parasite and was used as an internal control to confirm parasite 
infection within adult female Ae. aegypti (LVP). Total RNA from uninfected adult female 
Ae. aegypti (14 dpi) was used as a negative (-) control to validate amplification of 
nematode specific genes. 
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A. 

 
         B.      C. 

 

Figure 2. 150 ng of Bm-cpl-1 dsRNA potently and specifically suppresses Bm-cpl-1 
transcript abundance. (A) Micrograph shows ethidium bromide stained 1% agarose gel 
of semi quantitative RT-PCR of individual B. malayi infected Ae. aegypti 48 hrs post 
injection of RNAi trigger at 10 dpi. Injection with 150 ng Bm-cpl-1 resulted in complete 
suppression of Bm-cpl-1 in 80% of the samples tested (B) but had no impact on parasite 
prevalence (C). Tumor protein homolog (Bm-tph-1) is a nematode specific gene that is 
expressed throughout the life of the parasite and was used as an internal control to 
confirm parasite infection within adult female Ae. aegypti (LVP). dsCPL1 = 150 ng Bm-
cpl-1, dsRNA injected, dsLacZ = 150 ng LacZ dsRNA injected, Saline = saline injected, 
NT = infected uninjected Ae. aegypti, Ae = uninfected Ae. aegypti. Statistical analysis: 
One-way ANOVA with Tukey’s post-test. ***, P-value ≤ 0.001 relative to control (NT). 
N = 3. 
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Figure 3. Suppression of Bm-cpl-1 leads to aberrant phenotypes. Representative 
images of B. malayi L3 stage parasites collected from adult female Ae. aegypti (LVP) 
four days post injection (14 dpi) with RNAi trigger or controls. Images show kinked 
phenotype that was only observed in Bm-cpl-1 dsRNA injected individuals (arrows). 
Untreated = infected uninjected Ae. aegypti, dsLacZ = 150 ng LacZ dsRNA injected, 
Saline = saline injected, dsCPL1 = 150 ng Bm-cpl-1 dsRNA injected.  
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A. 

 
B. 

 

Figure 4. Bm-cpl-4/5 is not suppressed using our modified in squito protocol. 
(A) Representative micrograph of three trials shows ethidium bromide stained 1% 
agarose gel of semi quantitative RT-PCR of individual B. malayi infected Ae. aegypti 48 
hrs post injection of RNAi trigger at 5 dpi. 1-10 represents individual adult female Ae. 
aegypti that have been injected with 500 ng or 1000 ng dsRNA targeting either the 5’ or 
3’ end of Bm-cpl-4/5 or uninjected controls (No Treatment). (B) RNAi triggers targeting 
Bm-cpl-4/5 (dsCPL4/5) did not suppress Bm-cpl-4/5 expression regardless of region 
targeted (5’ or 3’ end). Statistical analysis: One-way ANOVA with Tukey’s post-test. N 
= 3. 
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